FL-bench:联邦学习基准测试框架使用指南
2024-09-12 11:32:23作者:董斯意
一、项目目录结构及介绍
FL-bench项目基于Git托管在GitHub上,其主要结构设计以支持高效和灵活的联邦学习研究和实验。以下是项目的基本目录结构概述:
FL-bench/
│
├── env # 环境配置相关,包括依赖库安装脚本
│
├── src # 核心源代码,分为server和client子目录,以及utils辅助工具
│ ├── server # 服务器端联邦学习算法实现
│ │ ├── fedavg.py # 示例:FedAvg算法实现
│ │ ├── fedprox.py # 示例:FedProx算法实现
│ ├── client # 客户端逻辑实现
│ ├── utils # 工具函数,包括模型、常量、数据处理等
│
├── data # 数据集相关文件,含数据预处理和分割脚本
│ └── utils # 数据处理工具模块
│
├── tests # 测试案例,用于验证代码正确性
│
├── CITATION.cff # 引用该框架的标准方式
├── LICENSE # 开源许可证文件
├── README.md # 项目简介和快速入门指南
│
├── generate_data.py # 脚本用于生成或准备联邦学习的数据划分
│
└── main.py # 主运行文件,执行实验的核心入口
二、项目的启动文件介绍
main.py
这是项目的主要执行脚本,通过此文件,你可以配置并启动联邦学习实验。使用时,需要指定想要运行的联邦学习算法名、配置文件路径以及其他可能的命令行参数。例如,运行基础的FedAvg算法,可以通过以下命令:
python main.py method=fedavg
该脚本提供了灵活性,允许用户通过命令行参数或者配置文件定制实验设置,如数据集选择、模型架构、训练轮数等。
三、项目的配置文件介绍
配置文件通常位于config目录下,它们提供了高度可配置的环境,使用户能够细化他们的实验设置。主要有两个层次的配置:
-
默认配置 (
defaults.yaml):包含了大多数联邦学习实验的基础配置。 -
特定配置文件:用户可以创建自定义的
.yaml文件来覆盖默认设置,比如my_cfg.yaml,允许更细致的实验定制。
配置文件中的关键设置项包括但不限于:
- dataset: 指定使用的数据集名称。
- model: 选用的模型架构。
- optimizer, lr_scheduler: 客户端的优化器和学习率调度器设定。
- common: 包含通用实验设置,如批处理大小、通信轮次等。
- parallel: 当启用并行计算时的相关设置,比如工作进程数量(
num_workers)。
例如,若要自定义FedProx的超参数,可以在相应的配置文件中这样添加:
fedprox:
mu: 0.01
在使用配置文件时,可以通过命令行通过--config-name参数指定特定的配置文件:
python main.py --config-name my_cfg.yaml method=fedprox
确保在进行实验之前,理解这些配置文件的结构和所控制的实验参数,以便有效地利用FL-bench的强大功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322