首页
/ FL-bench:联邦学习基准测试框架使用指南

FL-bench:联邦学习基准测试框架使用指南

2024-09-12 13:16:57作者:董斯意

一、项目目录结构及介绍

FL-bench项目基于Git托管在GitHub上,其主要结构设计以支持高效和灵活的联邦学习研究和实验。以下是项目的基本目录结构概述:

FL-bench/
│
├── env               # 环境配置相关,包括依赖库安装脚本
│
├── src               # 核心源代码,分为server和client子目录,以及utils辅助工具
│   ├── server         # 服务器端联邦学习算法实现
│   │   ├── fedavg.py   # 示例:FedAvg算法实现
│   │   ├── fedprox.py  # 示例:FedProx算法实现
│   ├── client         # 客户端逻辑实现
│   ├── utils          # 工具函数,包括模型、常量、数据处理等
│
├── data              # 数据集相关文件,含数据预处理和分割脚本
│   └── utils          # 数据处理工具模块
│
├── tests             # 测试案例,用于验证代码正确性
│
├── CITATION.cff      # 引用该框架的标准方式
├── LICENSE           # 开源许可证文件
├── README.md         # 项目简介和快速入门指南
│
├── generate_data.py  # 脚本用于生成或准备联邦学习的数据划分
│
└── main.py            # 主运行文件,执行实验的核心入口

二、项目的启动文件介绍

main.py

这是项目的主要执行脚本,通过此文件,你可以配置并启动联邦学习实验。使用时,需要指定想要运行的联邦学习算法名、配置文件路径以及其他可能的命令行参数。例如,运行基础的FedAvg算法,可以通过以下命令:

python main.py method=fedavg

该脚本提供了灵活性,允许用户通过命令行参数或者配置文件定制实验设置,如数据集选择、模型架构、训练轮数等。

三、项目的配置文件介绍

配置文件通常位于config目录下,它们提供了高度可配置的环境,使用户能够细化他们的实验设置。主要有两个层次的配置:

  1. 默认配置 (defaults.yaml):包含了大多数联邦学习实验的基础配置。

  2. 特定配置文件:用户可以创建自定义的.yaml文件来覆盖默认设置,比如my_cfg.yaml,允许更细致的实验定制。

配置文件中的关键设置项包括但不限于:

  • dataset: 指定使用的数据集名称。
  • model: 选用的模型架构。
  • optimizer, lr_scheduler: 客户端的优化器和学习率调度器设定。
  • common: 包含通用实验设置,如批处理大小、通信轮次等。
  • parallel: 当启用并行计算时的相关设置,比如工作进程数量(num_workers)。

例如,若要自定义FedProx的超参数,可以在相应的配置文件中这样添加:

fedprox:
    mu: 0.01

在使用配置文件时,可以通过命令行通过--config-name参数指定特定的配置文件:

python main.py --config-name my_cfg.yaml method=fedprox

确保在进行实验之前,理解这些配置文件的结构和所控制的实验参数,以便有效地利用FL-bench的强大功能。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
609
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
184
34
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0