VectorInstitute/fed-rag项目:从集中式训练快速迁移到联邦学习实战指南
2025-06-19 00:24:45作者:虞亚竹Luna
前言
在当今数据隐私日益重要的背景下,联邦学习(Federated Learning)作为一种分布式机器学习范式,允许模型在分散的数据上进行训练而无需集中数据。VectorInstitute的fed-rag项目为开发者提供了一套简洁的工具,能够轻松将传统的集中式训练任务转换为联邦学习任务。本文将详细介绍这一转换过程。
环境准备
首先需要安装fed-rag库及其依赖:
pip install fed-rag
该库基于PyTorch框架构建,安装时会自动包含PyTorch和联邦学习后端框架flwr(Flower)。
集中式训练基础
在开始联邦学习之前,我们需要先建立一个标准的集中式训练流程,这是理解后续联邦化改造的基础。
模型定义
我们使用一个简单的多层感知机(MLP)作为示例模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(torch.nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.fc1 = nn.Linear(42, 120) # 输入特征维度42
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2) # 输出2分类
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
训练循环实现
标准的PyTorch训练循环,包含梯度计算和参数更新:
from torch.types import Device
from torch.utils.data import DataLoader
def train_loop(
model: torch.nn.Module,
train_data: DataLoader,
val_data: DataLoader,
device: Device,
num_epochs: int,
learning_rate: float | None,
) -> TrainResult:
"""自定义训练循环"""
model.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
model.train()
running_loss = 0.0
for _ in range(num_epochs):
for batch in train_data:
features = batch["features"]
labels = batch["label"]
optimizer.zero_grad()
loss = criterion(model(features.to(device)), labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_trainloss = running_loss / len(train_data)
return TrainResult(loss=avg_trainloss)
评估函数
模型性能评估函数,计算准确率和损失:
def test(m: torch.nn.Module, test_loader: DataLoader) -> TestResult:
"""模型评估函数"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
m.to(device)
criterion = torch.nn.CrossEntropyLoss()
correct, loss = 0, 0.0
with torch.no_grad():
for batch in test_loader:
features = batch["features"].to(device)
labels = batch["label"].to(device)
outputs = m(features)
loss += criterion(outputs, labels).item()
correct += (torch.max(outputs.data, 1)[1] == labels).sum().item()
accuracy = correct / len(test_loader.dataset)
return TestResult(loss=loss, metrics={"accuracy": accuracy})
联邦化改造
现在我们将上述集中式训练流程改造为联邦学习模式,这是fed-rag项目的核心价值所在。
训练和测试函数联邦化装饰
使用fed-rag提供的装饰器对原有函数进行改造:
from fed_rag.decorators import federate
# 应用联邦化装饰器
train_loop = federate.trainer.pytorch(train_loop)
test = federate.tester.pytorch(test)
这些装饰器会自动分析函数的输入输出,使其适应联邦学习的特殊需求。
创建联邦学习任务
将装饰后的函数组合成联邦学习任务:
from fed_rag.fl_tasks.pytorch import PyTorchFLTask
fl_task = PyTorchFLTask.from_trainer_and_tester(
trainer=train_loop,
tester=test
)
构建联邦学习网络
创建服务器和客户端实例:
# 服务器端
model = Net()
server = fl_task.server(model=model)
# 客户端(示例创建2个)
clients = []
for i in range(2):
train_data, val_data = get_loaders(partition_id=i) # 获取分区数据
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
client = fl_task.client(
model=model,
train_data=train_data,
val_data=val_data,
device=device,
num_epochs=1, # 联邦学习中通常每个客户端训练1个epoch
learning_rate=0.1
)
clients.append(client)
启动联邦训练
启动服务器和客户端进程(实际部署时需要在不同进程中运行):
import flwr as fl
# 启动服务器(阻塞)
fl.server.start_server(server=server, server_address="[::]:8080")
# 启动客户端(需要分别在独立进程中运行)
fl.client.start_client(client=clients[0], server_address="[::]:8080")
fl.client.start_client(client=clients[1], server_address="[::]:8080")
关键点解析
- 数据分区:每个客户端拥有独立的数据分区,这是联邦学习的核心特征
- 训练流程:客户端本地训练后,只上传模型参数而非原始数据
- 参数聚合:服务器负责聚合各客户端的模型更新
- 通信协议:使用flwr框架的标准联邦学习通信协议
最佳实践建议
- 客户端数量:根据实际数据分布情况确定合适的客户端数量
- 本地训练轮数:通常设置为1,避免客户端过拟合本地数据
- 学习率调整:联邦学习可能需要比集中式训练更小的学习率
- 模型初始化:确保所有客户端使用相同的初始模型参数
总结
通过fed-rag项目,我们能够以最小的代码改动将传统的集中式训练任务转换为联邦学习任务。这种转换保持了原有PyTorch编程习惯的同时,增加了数据隐私保护能力。本文展示的流程可以作为联邦学习入门的基础模板,开发者可以根据实际需求进行扩展和优化。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248