VectorInstitute/fed-rag项目:从集中式训练快速迁移到联邦学习实战指南
2025-06-19 10:22:42作者:虞亚竹Luna
前言
在当今数据隐私日益重要的背景下,联邦学习(Federated Learning)作为一种分布式机器学习范式,允许模型在分散的数据上进行训练而无需集中数据。VectorInstitute的fed-rag项目为开发者提供了一套简洁的工具,能够轻松将传统的集中式训练任务转换为联邦学习任务。本文将详细介绍这一转换过程。
环境准备
首先需要安装fed-rag库及其依赖:
pip install fed-rag
该库基于PyTorch框架构建,安装时会自动包含PyTorch和联邦学习后端框架flwr(Flower)。
集中式训练基础
在开始联邦学习之前,我们需要先建立一个标准的集中式训练流程,这是理解后续联邦化改造的基础。
模型定义
我们使用一个简单的多层感知机(MLP)作为示例模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(torch.nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.fc1 = nn.Linear(42, 120) # 输入特征维度42
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2) # 输出2分类
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
训练循环实现
标准的PyTorch训练循环,包含梯度计算和参数更新:
from torch.types import Device
from torch.utils.data import DataLoader
def train_loop(
model: torch.nn.Module,
train_data: DataLoader,
val_data: DataLoader,
device: Device,
num_epochs: int,
learning_rate: float | None,
) -> TrainResult:
"""自定义训练循环"""
model.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
model.train()
running_loss = 0.0
for _ in range(num_epochs):
for batch in train_data:
features = batch["features"]
labels = batch["label"]
optimizer.zero_grad()
loss = criterion(model(features.to(device)), labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_trainloss = running_loss / len(train_data)
return TrainResult(loss=avg_trainloss)
评估函数
模型性能评估函数,计算准确率和损失:
def test(m: torch.nn.Module, test_loader: DataLoader) -> TestResult:
"""模型评估函数"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
m.to(device)
criterion = torch.nn.CrossEntropyLoss()
correct, loss = 0, 0.0
with torch.no_grad():
for batch in test_loader:
features = batch["features"].to(device)
labels = batch["label"].to(device)
outputs = m(features)
loss += criterion(outputs, labels).item()
correct += (torch.max(outputs.data, 1)[1] == labels).sum().item()
accuracy = correct / len(test_loader.dataset)
return TestResult(loss=loss, metrics={"accuracy": accuracy})
联邦化改造
现在我们将上述集中式训练流程改造为联邦学习模式,这是fed-rag项目的核心价值所在。
训练和测试函数联邦化装饰
使用fed-rag提供的装饰器对原有函数进行改造:
from fed_rag.decorators import federate
# 应用联邦化装饰器
train_loop = federate.trainer.pytorch(train_loop)
test = federate.tester.pytorch(test)
这些装饰器会自动分析函数的输入输出,使其适应联邦学习的特殊需求。
创建联邦学习任务
将装饰后的函数组合成联邦学习任务:
from fed_rag.fl_tasks.pytorch import PyTorchFLTask
fl_task = PyTorchFLTask.from_trainer_and_tester(
trainer=train_loop,
tester=test
)
构建联邦学习网络
创建服务器和客户端实例:
# 服务器端
model = Net()
server = fl_task.server(model=model)
# 客户端(示例创建2个)
clients = []
for i in range(2):
train_data, val_data = get_loaders(partition_id=i) # 获取分区数据
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
client = fl_task.client(
model=model,
train_data=train_data,
val_data=val_data,
device=device,
num_epochs=1, # 联邦学习中通常每个客户端训练1个epoch
learning_rate=0.1
)
clients.append(client)
启动联邦训练
启动服务器和客户端进程(实际部署时需要在不同进程中运行):
import flwr as fl
# 启动服务器(阻塞)
fl.server.start_server(server=server, server_address="[::]:8080")
# 启动客户端(需要分别在独立进程中运行)
fl.client.start_client(client=clients[0], server_address="[::]:8080")
fl.client.start_client(client=clients[1], server_address="[::]:8080")
关键点解析
- 数据分区:每个客户端拥有独立的数据分区,这是联邦学习的核心特征
- 训练流程:客户端本地训练后,只上传模型参数而非原始数据
- 参数聚合:服务器负责聚合各客户端的模型更新
- 通信协议:使用flwr框架的标准联邦学习通信协议
最佳实践建议
- 客户端数量:根据实际数据分布情况确定合适的客户端数量
- 本地训练轮数:通常设置为1,避免客户端过拟合本地数据
- 学习率调整:联邦学习可能需要比集中式训练更小的学习率
- 模型初始化:确保所有客户端使用相同的初始模型参数
总结
通过fed-rag项目,我们能够以最小的代码改动将传统的集中式训练任务转换为联邦学习任务。这种转换保持了原有PyTorch编程习惯的同时,增加了数据隐私保护能力。本文展示的流程可以作为联邦学习入门的基础模板,开发者可以根据实际需求进行扩展和优化。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660