VectorInstitute/fed-rag项目:从集中式训练快速迁移到联邦学习实战指南
2025-06-19 20:19:22作者:虞亚竹Luna
前言
在当今数据隐私日益重要的背景下,联邦学习(Federated Learning)作为一种分布式机器学习范式,允许模型在分散的数据上进行训练而无需集中数据。VectorInstitute的fed-rag项目为开发者提供了一套简洁的工具,能够轻松将传统的集中式训练任务转换为联邦学习任务。本文将详细介绍这一转换过程。
环境准备
首先需要安装fed-rag库及其依赖:
pip install fed-rag
该库基于PyTorch框架构建,安装时会自动包含PyTorch和联邦学习后端框架flwr(Flower)。
集中式训练基础
在开始联邦学习之前,我们需要先建立一个标准的集中式训练流程,这是理解后续联邦化改造的基础。
模型定义
我们使用一个简单的多层感知机(MLP)作为示例模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(torch.nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.fc1 = nn.Linear(42, 120) # 输入特征维度42
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2) # 输出2分类
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
训练循环实现
标准的PyTorch训练循环,包含梯度计算和参数更新:
from torch.types import Device
from torch.utils.data import DataLoader
def train_loop(
model: torch.nn.Module,
train_data: DataLoader,
val_data: DataLoader,
device: Device,
num_epochs: int,
learning_rate: float | None,
) -> TrainResult:
"""自定义训练循环"""
model.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
model.train()
running_loss = 0.0
for _ in range(num_epochs):
for batch in train_data:
features = batch["features"]
labels = batch["label"]
optimizer.zero_grad()
loss = criterion(model(features.to(device)), labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_trainloss = running_loss / len(train_data)
return TrainResult(loss=avg_trainloss)
评估函数
模型性能评估函数,计算准确率和损失:
def test(m: torch.nn.Module, test_loader: DataLoader) -> TestResult:
"""模型评估函数"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
m.to(device)
criterion = torch.nn.CrossEntropyLoss()
correct, loss = 0, 0.0
with torch.no_grad():
for batch in test_loader:
features = batch["features"].to(device)
labels = batch["label"].to(device)
outputs = m(features)
loss += criterion(outputs, labels).item()
correct += (torch.max(outputs.data, 1)[1] == labels).sum().item()
accuracy = correct / len(test_loader.dataset)
return TestResult(loss=loss, metrics={"accuracy": accuracy})
联邦化改造
现在我们将上述集中式训练流程改造为联邦学习模式,这是fed-rag项目的核心价值所在。
训练和测试函数联邦化装饰
使用fed-rag提供的装饰器对原有函数进行改造:
from fed_rag.decorators import federate
# 应用联邦化装饰器
train_loop = federate.trainer.pytorch(train_loop)
test = federate.tester.pytorch(test)
这些装饰器会自动分析函数的输入输出,使其适应联邦学习的特殊需求。
创建联邦学习任务
将装饰后的函数组合成联邦学习任务:
from fed_rag.fl_tasks.pytorch import PyTorchFLTask
fl_task = PyTorchFLTask.from_trainer_and_tester(
trainer=train_loop,
tester=test
)
构建联邦学习网络
创建服务器和客户端实例:
# 服务器端
model = Net()
server = fl_task.server(model=model)
# 客户端(示例创建2个)
clients = []
for i in range(2):
train_data, val_data = get_loaders(partition_id=i) # 获取分区数据
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
client = fl_task.client(
model=model,
train_data=train_data,
val_data=val_data,
device=device,
num_epochs=1, # 联邦学习中通常每个客户端训练1个epoch
learning_rate=0.1
)
clients.append(client)
启动联邦训练
启动服务器和客户端进程(实际部署时需要在不同进程中运行):
import flwr as fl
# 启动服务器(阻塞)
fl.server.start_server(server=server, server_address="[::]:8080")
# 启动客户端(需要分别在独立进程中运行)
fl.client.start_client(client=clients[0], server_address="[::]:8080")
fl.client.start_client(client=clients[1], server_address="[::]:8080")
关键点解析
- 数据分区:每个客户端拥有独立的数据分区,这是联邦学习的核心特征
- 训练流程:客户端本地训练后,只上传模型参数而非原始数据
- 参数聚合:服务器负责聚合各客户端的模型更新
- 通信协议:使用flwr框架的标准联邦学习通信协议
最佳实践建议
- 客户端数量:根据实际数据分布情况确定合适的客户端数量
- 本地训练轮数:通常设置为1,避免客户端过拟合本地数据
- 学习率调整:联邦学习可能需要比集中式训练更小的学习率
- 模型初始化:确保所有客户端使用相同的初始模型参数
总结
通过fed-rag项目,我们能够以最小的代码改动将传统的集中式训练任务转换为联邦学习任务。这种转换保持了原有PyTorch编程习惯的同时,增加了数据隐私保护能力。本文展示的流程可以作为联邦学习入门的基础模板,开发者可以根据实际需求进行扩展和优化。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25