NeuralForecast中TFT模型的概率预测分位数问题解析
2025-06-24 07:07:17作者:齐添朝
概述
在使用NeuralForecast库中的Temporal Fusion Transformer(TFT)模型进行概率预测时,开发者可能会遇到一个常见但容易被忽视的问题:预测输出的分位数结果可能出现非单调性。具体表现为,较低置信区间的预测值反而高于较高置信区间的预测值,这与统计学常识相违背。
问题现象
当使用MQLoss作为损失函数并设置多个置信水平(如[60, 80, 90])时,预测结果可能出现以下异常情况:
- TFT-lo-60(对应20%分位数)的值低于TFT-lo-80(10%分位数)和TFT-lo-90(5%分位数)
- TFT-hi-60(80%分位数)的值低于TFT-median(50%分位数)
从统计学角度,我们期望分位数预测结果应该保持单调递增的顺序:5%分位数 < 10%分位数 < 20%分位数 < 50%分位数 < 80%分位数 < 90%分位数 < 95%分位数。
技术原理
这个问题源于MQLoss(分位数损失函数)的设计特性。MQLoss在训练过程中独立优化每个分位数,没有强制约束不同分位数之间的单调性关系。这种设计带来了以下特点:
- 灵活性:每个分位数的预测可以自由调整,不受其他分位数的约束
- 潜在问题:在极端情况下可能导致分位数交叉现象
- 计算效率:避免了复杂的单调性约束计算
解决方案
针对这个问题,项目维护者提出了两种实用的解决方案:
-
增加分位数数量:使用更密集的分位数网格(如10或20个分位数),这样即使出现局部非单调性,也能通过后续处理恢复整体趋势
-
后处理排序:对预测结果进行排序,然后重新计算所需的分位数。这种方法简单有效,可以确保最终输出的分位数保持正确的单调关系
最佳实践建议
- 对于关键业务场景,建议使用10个以上的分位数进行训练
- 在输出最终结果前,始终进行单调性检查
- 考虑使用更复杂的损失函数(如CRPS)来替代MQLoss,可能获得更稳定的分位数关系
- 对于时间序列预测,可以结合滑动窗口验证来评估分位数预测的质量
总结
NeuralForecast中的TFT模型在概率预测方面功能强大,但使用者需要理解MQLoss的特性及其潜在限制。通过增加分位数密度和适当的后处理,可以轻松解决分位数非单调的问题,获得可靠的概率预测结果。这一问题的处理也体现了在实际机器学习应用中,理论模型与工程实践相结合的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130