NeuralForecast中TFT模型的概率预测分位数问题解析
2025-06-24 07:07:17作者:齐添朝
概述
在使用NeuralForecast库中的Temporal Fusion Transformer(TFT)模型进行概率预测时,开发者可能会遇到一个常见但容易被忽视的问题:预测输出的分位数结果可能出现非单调性。具体表现为,较低置信区间的预测值反而高于较高置信区间的预测值,这与统计学常识相违背。
问题现象
当使用MQLoss作为损失函数并设置多个置信水平(如[60, 80, 90])时,预测结果可能出现以下异常情况:
- TFT-lo-60(对应20%分位数)的值低于TFT-lo-80(10%分位数)和TFT-lo-90(5%分位数)
- TFT-hi-60(80%分位数)的值低于TFT-median(50%分位数)
从统计学角度,我们期望分位数预测结果应该保持单调递增的顺序:5%分位数 < 10%分位数 < 20%分位数 < 50%分位数 < 80%分位数 < 90%分位数 < 95%分位数。
技术原理
这个问题源于MQLoss(分位数损失函数)的设计特性。MQLoss在训练过程中独立优化每个分位数,没有强制约束不同分位数之间的单调性关系。这种设计带来了以下特点:
- 灵活性:每个分位数的预测可以自由调整,不受其他分位数的约束
- 潜在问题:在极端情况下可能导致分位数交叉现象
- 计算效率:避免了复杂的单调性约束计算
解决方案
针对这个问题,项目维护者提出了两种实用的解决方案:
-
增加分位数数量:使用更密集的分位数网格(如10或20个分位数),这样即使出现局部非单调性,也能通过后续处理恢复整体趋势
-
后处理排序:对预测结果进行排序,然后重新计算所需的分位数。这种方法简单有效,可以确保最终输出的分位数保持正确的单调关系
最佳实践建议
- 对于关键业务场景,建议使用10个以上的分位数进行训练
- 在输出最终结果前,始终进行单调性检查
- 考虑使用更复杂的损失函数(如CRPS)来替代MQLoss,可能获得更稳定的分位数关系
- 对于时间序列预测,可以结合滑动窗口验证来评估分位数预测的质量
总结
NeuralForecast中的TFT模型在概率预测方面功能强大,但使用者需要理解MQLoss的特性及其潜在限制。通过增加分位数密度和适当的后处理,可以轻松解决分位数非单调的问题,获得可靠的概率预测结果。这一问题的处理也体现了在实际机器学习应用中,理论模型与工程实践相结合的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492