FreeSql多租户场景下的表结构缓存优化实践
背景介绍
在基于FreeSql构建多租户系统时,开发人员常常会遇到一个典型问题:当不同租户使用相同的PostgreSQL数据库但位于不同的searchpath(搜索路径)下时,如何为每个租户实例维护独立的表结构缓存。这个问题在FreeSqlCloud等场景中尤为突出。
问题分析
FreeSql默认情况下使用全局静态的CacheTableEntityFactory
来缓存表结构信息。这意味着当多个租户实例共享同一个FreeSql类型时,表结构缓存会被最后一个注册的配置覆盖,导致租户间的表结构映射出现混乱。
例如,当租户A将表映射为schemaA.tbname
而租户B映射为schemaB.tbname
时,如果使用全局缓存,最终只有一个映射关系会生效,这显然不符合多租户场景的需求。
解决方案演进
初始方案:自定义缓存工厂
最初提出的解决方案是通过UseCustomTableEntityCacheFactory
方法为每个租户实例创建独立的缓存:
new FreeSqlBuilder().UseCustomTableEntityCacheFactory(() => {
Tkey _dbkey = (Tkey)AccessHelper.ReadPrivateField(fsq, "_dbkey");
var cache = FsqExtensionsCache<Tkey>.EntityConfigCache.GetOrAdd(_dbkey, (key) => new());
return cache;
});
这种方法虽然可行,但存在以下问题:
- 需要通过反射获取内部字段,不够优雅
- 需要开发者自行管理缓存生命周期
- 增加了代码复杂度
优化方案:使用连接工厂
更优雅的解决方案是利用FreeSql内置的UseConnectionFactory
方法:
new FreeSqlBuilder().UseConnectionFactory(
DataType.CustomPostgreSQL,
() => new Npgsql.NpgsqlConnection(tenant_connectionString),
typeof(FreeSql.PostgreSQL.PostgreSQLProvider<>)
);
这种方法具有以下优势:
- 原生支持PostgreSQL的searchpath特性
- 无需处理表结构缓存问题
- 代码更加简洁直观
- 性能更好,无需额外的缓存管理
实现原理
当使用UseConnectionFactory
方法时,FreeSql会为每个租户创建独立的数据库连接,这些连接可以配置不同的searchpath。PostgreSQL的searchpath特性会自动处理不同模式(schema)下的表访问,因此不再需要为每个租户单独维护表结构缓存。
最佳实践
对于PostgreSQL多租户场景,推荐以下实现方式:
- 为每个租户配置独立的连接字符串,包含特定的searchpath
- 使用
UseConnectionFactory
方法创建租户特定的FreeSql实例 - 避免使用全局静态缓存,确保每个租户实例完全独立
总结
在FreeSql多租户架构设计中,正确处理表结构缓存是关键。通过利用PostgreSQL原生的searchpath特性和FreeSql的连接工厂机制,可以构建出既高效又易于维护的多租户解决方案。这种方法不仅解决了表结构缓存问题,还简化了代码结构,提高了系统的可维护性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









