DSPy项目2.6.17版本发布:适配器重构与优化器改进
项目简介
DSPy是一个用于构建和优化语言模型(LM)管道的Python框架。它通过声明式编程的方式,让开发者能够更高效地设计和调整复杂的语言模型应用流程。DSPy特别强调模块化和可组合性,使得构建基于LM的系统变得更加系统化和可维护。
2.6.17版本核心更新
适配器(Adapters)的重大重构
本次版本对DSPy的适配器系统进行了深度重构,使其架构更加灵活和可扩展。适配器在DSPy中扮演着关键角色,它们负责将DSPy的内部表示与各种语言模型API进行桥接。
重构后的适配器系统具有以下特点:
-
模块化设计:新的架构使得添加对新语言模型的支持变得更加简单,开发者可以更容易地实现自定义适配器。
-
JSON适配器修复:解决了JSON适配器在首次尝试时可能出现的问题,提高了稳定性。
-
ReAct轨迹支持:所有适配器现在都能正确处理ReAct(推理-行动)轨迹,这对于需要多步推理的任务尤为重要。
-
聊天适配器微调修复:专门修复了聊天适配器在微调过程中的问题,提升了对话场景下的表现。
优化器(Optimizers)改进
DSPy的优化器组件也获得了重要更新:
-
MIPROv2优化:
- 引入了新的默认参数设置,使优化过程更加高效
- 修复了试验日志记录的问题,提高了调试和分析的便利性
-
COPRO优化器清理:
- 移除了不再需要的inspect_history功能,简化了代码结构
- 这一变化使得COPRO优化器的运行更加轻量级
语言模型(LM)相关修复
针对底层语言模型交互的改进:
-
使用量跟踪修复:当某些字段为None时,现在能够正确跟踪资源使用情况。
-
指数退避重试机制:在完成调用中实现了指数退避重试策略,增强了在临时性网络问题或API限制情况下的鲁棒性。
技术意义与影响
这次更新从架构层面提升了DSPy的稳定性和可扩展性,特别是适配器系统的重构为未来支持更多类型的语言模型奠定了基础。优化器的改进则使得自动提示优化和管道调优过程更加可靠和高效。
对于开发者而言,这些变化意味着:
-
可以更自信地构建复杂的语言模型应用,减少边缘情况下的错误。
-
系统在面临API限制或网络波动时表现更加稳健。
-
优化过程的透明度和可控性得到提升,便于调试和性能分析。
DSPy通过这些持续改进,正逐步成为一个更加成熟的语言模型编程框架,为构建生产级的LM应用提供了可靠的工具链。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00