Turing.jl变分推断后处理:将结果转换为MCMC链对象
2025-07-04 01:44:57作者:齐冠琰
概述
在Turing.jl中进行变分推断(VI)分析后,用户通常需要对结果进行可视化或进一步分析。虽然官方文档提供了基本的绘图方法,但将VI结果转换为MCMC链(MCMChains)对象可以带来更多可能性。本文将详细介绍这一转换过程及其优势。
为什么需要转换
变分推断和马尔可夫链蒙特卡洛(MCMC)是贝叶斯统计中两种不同的近似推断方法。在Turing.jl生态中:
- 变分推断:计算速度快,适合大规模数据
- MCMC:精度高,有更丰富的后处理工具
通过将VI结果转换为MCMC链对象,用户可以:
- 使用StatsPlots、PairPlots等成熟的可视化工具
- 利用MCMC诊断工具检查结果
- 保持分析流程的一致性
基本转换方法
最简单的转换方式是直接使用Chains构造函数:
chain = Chains(sample', [varname1, varname2...])
其中:
sample是VI分析的结果- 第二个参数是模型参数的名称列表
自动获取参数名
手动指定参数名可能繁琐,Turing.jl提供了几种自动获取参数名的方法:
1. 从模型直接获取
using DynamicPPL
param_names = DynamicPPL.syms(DynamicPPL.VarInfo(m))
其中m是Turing模型对象。
2. 从已有链获取
对于更复杂的模型(包含向量参数),可以使用:
DynamicPPL.varnames(chain)
这会返回一个包含所有参数名的KeySet对象。
3. 从VarInfo获取
对于尚未采样的模型,可以通过VarInfo获取参数名:
v = VarInfo(m)
vns_and_values = collect(DynamicPPL.varname_and_value_leaves(DynamicPPL.values_as(v, OrderedDict)))
vns = map(first, vns_and_values)
这种方法能正确处理向量参数。
实际应用示例
假设我们已经完成了VI分析:
# 定义模型
@model function demo(x, y)
α ~ Normal(0, 1)
β ~ Normal(0, 1)
σ ~ Exponential(1)
μ = α .+ β .* x
y ~ MvNormal(μ, σ)
end
# 运行VI
q = vi(demo(xdata, ydata), ADVI(10, 1000))
sample = rand(q, 1000)
转换为MCMC链:
using MCMCChains
chain = Chains(sample', [:α, :β, :σ])
现在可以像普通MCMC结果一样使用:
using StatsPlots
plot(chain)
注意事项
- 转置操作(
')是必要的,因为VI样本的维度与MCMC链期望的格式不同 - 对于复杂模型,建议使用自动获取参数名的方法,避免手动输入错误
- 转换后的链可以用于大多数MCMC后处理,但要注意VI和MCMC的本质区别
总结
将Turing.jl的VI结果转换为MCMC链对象是一个简单而强大的技巧,它弥合了两种推断方法的后处理工具差距。通过这种方法,用户可以在保持VI计算效率的同时,享受MCMC丰富的分析生态系统。
对于更复杂的模型结构,Turing.jl提供了多种自动获取参数名的方法,使得这一转换过程更加可靠和自动化。这一技术特别适合需要在开发阶段快速迭代,同时又需要丰富可视化的工作流程。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1