使用Unsloth在CPU环境下微调与推理Llama3模型的技术实践
2025-05-03 06:54:40作者:苗圣禹Peter
前言
随着大语言模型的普及,如何在资源受限的环境中高效地进行模型微调和推理成为了一个重要课题。本文将详细介绍如何利用Unsloth框架在CPU环境下对Llama3模型进行微调和推理的技术方案,同时对比GPU与CPU的性能差异。
环境准备与配置
在进行Llama3模型微调前,需要准备以下环境配置:
-
硬件要求:
- CPU:推荐使用Intel i9或更高性能处理器
- 内存:建议至少64GB RAM
- 存储:需要足够空间存放模型和数据集
-
软件依赖:
- Python 3.10或更高版本
- PyTorch 2.4.0
- Transformers库
- Unsloth框架
模型微调配置
在CPU环境下进行微调时,需要特别注意以下配置参数:
config = {
"model_config": {
"base_model": "本地模型路径",
"finetuned_model": "微调后模型保存路径",
"max_seq_length": 5000,
"dtype": torch.float32, # CPU环境下使用float32
"load_in_4bit": False, # CPU不支持4bit量化
},
"lora_config": {
"r": 16,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
"lora_alpha": 16,
"lora_dropout": 0,
"bias": "none",
"use_gradient_checkpointing": True,
},
"training_config": {
"per_device_train_batch_size": 1,
"gradient_accumulation_steps": 1,
"num_train_epochs": 1,
"learning_rate": 2e-4,
"fp16": False,
"bf16": False,
}
}
CPU推理方案
在CPU环境下进行推理时,有几种可行的技术方案:
方案一:直接使用HuggingFace CPU推理
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"微调后的模型路径",
device_map="cpu",
torch_dtype=torch.float32,
)
tokenizer = AutoTokenizer.from_pretrained("微调后的模型路径")
inputs = tokenizer("输入文本", return_tensors="pt").to("cpu")
outputs = model.generate(**inputs, max_new_tokens=256)
方案二:转换为GGUF格式使用llama.cpp
- 首先将微调后的模型转换为GGUF格式
- 使用llama.cpp进行高效CPU推理
性能对比与优化建议
在实际测试中发现:
-
在相同模型和输入条件下:
- GPU(1080 Ti)推理耗时约10秒
- CPU(i9)推理耗时约30秒
-
内存消耗:
- GPU需要约12GB显存
- CPU需要约60GB内存
优化建议:
-
对于CPU推理:
- 使用量化技术减少内存占用
- 考虑模型剪枝降低计算量
- 使用更高效的推理引擎如llama.cpp
-
对于GPU推理:
- 充分利用CUDA核心
- 优化batch size提高吞吐量
- 使用混合精度训练加速
常见问题解决
-
量化状态未初始化错误:
- 在CPU环境下不应使用4bit量化
- 解决方案:设置
load_in_4bit=False
-
设备兼容性问题:
- 确保所有张量都在同一设备上
- 使用
.to("cpu")明确指定CPU设备
-
内存不足问题:
- 减小
max_seq_length - 使用更小的batch size
- 考虑模型量化或蒸馏
- 减小
结语
通过本文的介绍,我们了解了如何在CPU环境下使用Unsloth框架对Llama3模型进行微调和推理。虽然CPU环境下的性能不及GPU,但通过合理的配置和优化,仍然可以在资源受限的环境中实现有效的大模型应用。未来随着CPU计算能力的提升和优化技术的进步,CPU环境下的大模型应用将会更加普及和高效。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350