使用Unsloth在CPU环境下微调与推理Llama3模型的技术实践
2025-05-03 14:33:02作者:苗圣禹Peter
前言
随着大语言模型的普及,如何在资源受限的环境中高效地进行模型微调和推理成为了一个重要课题。本文将详细介绍如何利用Unsloth框架在CPU环境下对Llama3模型进行微调和推理的技术方案,同时对比GPU与CPU的性能差异。
环境准备与配置
在进行Llama3模型微调前,需要准备以下环境配置:
-
硬件要求:
- CPU:推荐使用Intel i9或更高性能处理器
- 内存:建议至少64GB RAM
- 存储:需要足够空间存放模型和数据集
-
软件依赖:
- Python 3.10或更高版本
- PyTorch 2.4.0
- Transformers库
- Unsloth框架
模型微调配置
在CPU环境下进行微调时,需要特别注意以下配置参数:
config = {
"model_config": {
"base_model": "本地模型路径",
"finetuned_model": "微调后模型保存路径",
"max_seq_length": 5000,
"dtype": torch.float32, # CPU环境下使用float32
"load_in_4bit": False, # CPU不支持4bit量化
},
"lora_config": {
"r": 16,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
"lora_alpha": 16,
"lora_dropout": 0,
"bias": "none",
"use_gradient_checkpointing": True,
},
"training_config": {
"per_device_train_batch_size": 1,
"gradient_accumulation_steps": 1,
"num_train_epochs": 1,
"learning_rate": 2e-4,
"fp16": False,
"bf16": False,
}
}
CPU推理方案
在CPU环境下进行推理时,有几种可行的技术方案:
方案一:直接使用HuggingFace CPU推理
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"微调后的模型路径",
device_map="cpu",
torch_dtype=torch.float32,
)
tokenizer = AutoTokenizer.from_pretrained("微调后的模型路径")
inputs = tokenizer("输入文本", return_tensors="pt").to("cpu")
outputs = model.generate(**inputs, max_new_tokens=256)
方案二:转换为GGUF格式使用llama.cpp
- 首先将微调后的模型转换为GGUF格式
- 使用llama.cpp进行高效CPU推理
性能对比与优化建议
在实际测试中发现:
-
在相同模型和输入条件下:
- GPU(1080 Ti)推理耗时约10秒
- CPU(i9)推理耗时约30秒
-
内存消耗:
- GPU需要约12GB显存
- CPU需要约60GB内存
优化建议:
-
对于CPU推理:
- 使用量化技术减少内存占用
- 考虑模型剪枝降低计算量
- 使用更高效的推理引擎如llama.cpp
-
对于GPU推理:
- 充分利用CUDA核心
- 优化batch size提高吞吐量
- 使用混合精度训练加速
常见问题解决
-
量化状态未初始化错误:
- 在CPU环境下不应使用4bit量化
- 解决方案:设置
load_in_4bit=False
-
设备兼容性问题:
- 确保所有张量都在同一设备上
- 使用
.to("cpu")
明确指定CPU设备
-
内存不足问题:
- 减小
max_seq_length
- 使用更小的batch size
- 考虑模型量化或蒸馏
- 减小
结语
通过本文的介绍,我们了解了如何在CPU环境下使用Unsloth框架对Llama3模型进行微调和推理。虽然CPU环境下的性能不及GPU,但通过合理的配置和优化,仍然可以在资源受限的环境中实现有效的大模型应用。未来随着CPU计算能力的提升和优化技术的进步,CPU环境下的大模型应用将会更加普及和高效。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396