TripleDoggy 开源项目安装与使用指南
项目概述
TripleDoggy 是一个基于 Clang Static Analyzer 的源码漏洞检测插件,专为 C/C++/Objective-C 源代码设计。它利用静态分析技术,通过自定义检查器来发现潜在的编程缺陷,例如空指针解引用、双重释放、整型溢出等。
项目目录结构及介绍
以下是 TripleDoggy 项目的基本目录结构概览,每个关键组件的作用简述如下:
├── arcconfig # Arcanist 配置文件,用于 Phabricator 工具集成
├── bindings # 第三方绑定相关代码(如果存在)
├── cmake # CMake 构建系统相关脚本
├── docs # 文档资料
├── examples # 示例代码
├── include # 头文件目录,存放API定义
├── lib # 库文件或辅助库代码
├── projects # 可能包含特定项目的示例或集成设置
├── resources # 其他资源文件
├── runtimes # 运行时相关的文件
├── test # 单元测试代码
├── tools # 辅助工具或脚本
├── unittests # 单元测试套件
├── utils # 通用工具函数或模块
├── tripledoggy_test # 特定于插件测试的代码或数据
├── README.md # 主要的项目说明文件
├── CMakeLists.txt # CMake构建文件,定义构建规则
├── CODE_OWNERS # 代码负责人列表
├── LICENSE # 许可证文件,表明软件的授权方式
└── LLVMBuild.txt # 可能与LLVM构建相关联的配置信息
启动文件介绍
TripleDoggy 并没有传统意义上的“启动文件”,因为它作为一个静态分析工具插件,主要是通过Clang编译器调用来激活其功能。但在实际应用中,当你想要运行特定的检测时,你会通过Clang命令行工具指定插件和要分析的源代码文件,例如:
/build/bin/clang -cc1-analyze-analyzer-checker=alpha.unix.NewDereference /llvm/tripledoggy_test/nulldereference.c
这里的 /build/bin/clang 是编译器的路径,-cc1 是进入编译器前端的标志,-analyze 启用静态分析,而 analyzer-checker= 后跟随的是你要使用的检查器名字。
配置文件介绍
项目中直接关联的配置文件主要有 arcconfig 和 CMakeLists.txt。
-
arcconfig: 此文件主要用于Arcanist,这是一个Facebook开源的代码审查工具,不是直接涉及插件运行的配置,更多是用来设定Phabricator代码审核的偏好。
-
CMakeLists.txt: 这是CMake构建系统的配置文件,非常重要。它定义了如何编译和链接项目,包括库、可执行文件的生成规则,以及项目依赖项的管理。通过修改此文件,你可以控制编译过程中的许多方面,比如目标平台、编译选项等。
在实际使用中,开发者并不需要直接编辑这些配置文件来进行日常的漏洞检测工作,而是需要按照项目提供的指南进行编译和运行相应的命令来激活插件功能。用户自定义配置,如果有需求,可能更多地体现在特定的CMake选项或通过环境变量设置来调整分析行为。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00