利用 PyDolphinScheduler 实现高效的作业调度管理
在当今的数字化时代,作业调度管理是确保企业级数据处理流程高效运行的关键环节。Apache DolphinScheduler 是一个强大的开源作业调度框架,而 PyDolphinScheduler 则是其 Python 客户端,允许开发者通过 Python 代码定义工作流,实现所谓的“工作流即代码”。本文将向您展示如何使用 PyDolphinScheduler 来高效地完成作业调度管理任务。
引言
作业调度管理对于任何需要自动化执行周期性或定时任务的组织来说至关重要。通过自动化这些任务,不仅可以减少人为错误,还能提高整体的工作效率。PyDolphinScheduler 作为 Apache DolphinScheduler 的 Python API,为开发者提供了一种简便的方式来定义和管理工作流,从而提高作业调度的灵活性和可维护性。
准备工作
环境配置要求
在开始使用 PyDolphinScheduler 之前,您需要确保您的环境中安装了以下依赖:
- Python 3.6 - 3.10(注意:在 Window 操作系统上,Python 版本高于 3.10 的环境中 PyDolphinScheduler 无法正常工作,因为依赖的 py4j 在这些环境中无法运行)
- pip
所需数据和工具
- DolphinScheduler 独立服务器(可通过 Docker 容器启动)
- PyDolphinScheduler 库
模型使用步骤
数据预处理方法
在使用 PyDolphinScheduler 之前,您需要确保已经有一个运行中的 DolphinScheduler 服务器。可以通过以下命令使用 Docker 启动一个独立的服务器:
DOLPHINSCHEDULER_VERSION=3.1.1
docker run --name dolphinscheduler-standalone-server -p 12345:12345 -p 25333:25333 -e API_PYTHON_GATEWAY_ENABLED="true" -d apache/dolphinscheduler-standalone-server:"${DOLPHINSCHEDULER_VERSION}"
启动容器后,可以通过浏览器访问 http://localhost:12345/dolphinscheduler 来访问 DolphinScheduler UI。
模型加载和配置
安装 PyDolphinScheduler:
python -m pip install apache-dolphinscheduler
验证安装是否成功:
pydolphinscheduler version
任务执行流程
您可以使用 PyDolphinScheduler 提供的示例代码来创建和运行一个工作流。首先,获取示例代码:
curl https://raw.githubusercontent.com/apache/dolphinscheduler-sdk-python/main/src/pydolphinscheduler/examples/tutorial.py -o ./tutorial.py
然后,编辑 tutorial.py 文件,将 tenant_exists 替换为实际存在的租户用户名。
最后,运行示例:
python ./tutorial.py
在运行示例后,一个新工作流将会被创建,并在 DolphinScheduler Web UI 的项目管理页面中可见。
结果分析
执行完工作流后,您可以在 DolphinScheduler Web UI 的工作流实例页面中查看工作流的运行情况。输出结果的解读和性能评估指标将取决于您定义的工作流和任务的具体需求。
结论
通过使用 PyDolphinScheduler,开发者可以更高效地管理和调度作业。它不仅简化了工作流的定义,还提供了灵活性和可扩展性,有助于提高作业调度管理的整体效率。随着业务需求的不断变化,建议持续优化工作流设计,以适应未来的挑战。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00