Slurm for Machine Learning 使用教程
2024-09-03 06:32:26作者:吴年前Myrtle
项目介绍
Slurm for Machine Learning 是一个基于 Slurm 工作负载管理器的机器学习工作流项目。Slurm 是一个高度可扩展的集群管理工具,广泛用于高性能计算环境。该项目旨在简化机器学习任务的资源分配、任务调度和并行处理,使得用户能够更高效地管理和执行复杂的机器学习实验。
项目快速启动
环境准备
-
安装 Slurm: 确保你的系统上已经安装了 Slurm。你可以参考 Slurm 官方安装文档 进行安装。
-
克隆项目:
git clone https://github.com/y0ast/slurm-for-ml.git cd slurm-for-ml
配置和运行
-
配置 Slurm 作业: 编辑
job_script.sh文件,根据你的需求配置资源和命令。# job_script.sh #!/bin/bash #SBATCH --job-name=ml_job #SBATCH --output=output.log #SBATCH --error=error.log #SBATCH --time=01:00:00 #SBATCH --partition=gpu #SBATCH --gres=gpu:1 #SBATCH --mem=16G python train_model.py -
提交作业:
sbatch job_script.sh
应用案例和最佳实践
案例一:超参数调优
使用 Slurm 进行超参数调优时,可以并行运行多个实验,每个实验使用不同的超参数组合。以下是一个示例脚本:
# hyperparameter_tuning.sh
#!/bin/bash
#SBATCH --job-name=hyperparam_tuning
#SBATCH --output=tuning_output.log
#SBATCH --error=tuning_error.log
#SBATCH --time=02:00:00
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --mem=16G
#SBATCH --array=1-10
python train_model.py --lr=0.001 --batch_size=32 --epochs=50
最佳实践
- 资源管理: 根据任务需求合理分配 CPU、GPU 和内存资源。
- 日志管理: 确保每个作业都有独立的日志文件,便于调试和监控。
- 并行化: 利用 Slurm 的并行处理能力,提高实验效率。
典型生态项目
1. TensorFlow on Slurm
TensorFlow 是一个广泛使用的深度学习框架,结合 Slurm 可以高效地进行大规模模型训练。
2. PyTorch on Slurm
PyTorch 是另一个流行的深度学习框架,通过 Slurm 可以实现资源的高效利用和任务的并行处理。
3. Dask on Slurm
Dask 是一个灵活的并行计算库,适用于处理大规模数据和复杂计算任务,与 Slurm 结合可以进一步提升计算效率。
通过以上模块的介绍和实践,你可以更好地利用 Slurm for Machine Learning 项目进行高效的机器学习任务管理和执行。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100