Slurm for Machine Learning 使用教程
2024-09-03 09:13:14作者:吴年前Myrtle
项目介绍
Slurm for Machine Learning 是一个基于 Slurm 工作负载管理器的机器学习工作流项目。Slurm 是一个高度可扩展的集群管理工具,广泛用于高性能计算环境。该项目旨在简化机器学习任务的资源分配、任务调度和并行处理,使得用户能够更高效地管理和执行复杂的机器学习实验。
项目快速启动
环境准备
- 
安装 Slurm: 确保你的系统上已经安装了 Slurm。你可以参考 Slurm 官方安装文档 进行安装。
 - 
克隆项目:
git clone https://github.com/y0ast/slurm-for-ml.git cd slurm-for-ml 
配置和运行
- 
配置 Slurm 作业: 编辑
job_script.sh文件,根据你的需求配置资源和命令。# job_script.sh #!/bin/bash #SBATCH --job-name=ml_job #SBATCH --output=output.log #SBATCH --error=error.log #SBATCH --time=01:00:00 #SBATCH --partition=gpu #SBATCH --gres=gpu:1 #SBATCH --mem=16G python train_model.py - 
提交作业:
sbatch job_script.sh 
应用案例和最佳实践
案例一:超参数调优
使用 Slurm 进行超参数调优时,可以并行运行多个实验,每个实验使用不同的超参数组合。以下是一个示例脚本:
# hyperparameter_tuning.sh
#!/bin/bash
#SBATCH --job-name=hyperparam_tuning
#SBATCH --output=tuning_output.log
#SBATCH --error=tuning_error.log
#SBATCH --time=02:00:00
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --mem=16G
#SBATCH --array=1-10
python train_model.py --lr=0.001 --batch_size=32 --epochs=50
最佳实践
- 资源管理: 根据任务需求合理分配 CPU、GPU 和内存资源。
 - 日志管理: 确保每个作业都有独立的日志文件,便于调试和监控。
 - 并行化: 利用 Slurm 的并行处理能力,提高实验效率。
 
典型生态项目
1. TensorFlow on Slurm
TensorFlow 是一个广泛使用的深度学习框架,结合 Slurm 可以高效地进行大规模模型训练。
2. PyTorch on Slurm
PyTorch 是另一个流行的深度学习框架,通过 Slurm 可以实现资源的高效利用和任务的并行处理。
3. Dask on Slurm
Dask 是一个灵活的并行计算库,适用于处理大规模数据和复杂计算任务,与 Slurm 结合可以进一步提升计算效率。
通过以上模块的介绍和实践,你可以更好地利用 Slurm for Machine Learning 项目进行高效的机器学习任务管理和执行。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446