探索医疗成像的未来:使用分数基生成模型解决逆问题
2024-05-30 03:34:56作者:滑思眉Philip
探索医疗成像的未来:使用分数基生成模型解决逆问题
在这个快速发展的科技时代,医疗成像领域正迎来一场革新。由Yang Song, Liyue Shen, Lei Xing和Stefano Ermon等人提出的新项目,利用分数基生成模型(Score-Based Generative Models)解决了线性逆问题,为我们揭示了在医疗图像处理中的一种崭新可能。
项目简介
这个开源项目提供了一个基于JAX框架的代码库,用于在论文中描述的方法实现。该方法能够有效地应用于稀疏视图的计算机断层扫描(CT)、磁共振成像(MRI)以及CT成像中的金属伪影消除(MAR)。通过不依赖于物理测量过程的纯生成模型,该项目可在测试时快速适应不同的成像过程,无需重新训练模型,展现了出色的性能。
技术分析
项目采用了先进的分数基生成模型,结合随机微分方程(Score-Based Generative Modeling through Stochastic Differential Equations),以及改进的拉格朗日动态(Langevin)采样方法。此外,还包括一个投影条件优化策略(projection),以增强模型的适应性和效果。这种创新的方式使得模型即使在面对复杂的医疗成像挑战时也能保持高效与准确。
应用场景
这个项目不仅适用于重建任务,如从有限数据点恢复高质量的CT或MRI图像,还能够处理金属伪影等异常情况,提升医疗图像的质量,从而帮助医生更准确地进行诊断。由于其高度可扩展性,它有潜力被应用到各种医疗成像设备和技术上,推动医疗领域的进步。
项目特点
- 通用性 - 不需了解物理测量过程即可训练,适应性强。
- 灵活性 - 测试时快速适应不同成像过程,无须重新训练。
- 高效性 - 提供多种采样方法,如“Score SDE”、“Langevin”等,优化求解逆问题。
- 易于使用 - 提供配置文件和命令行接口,方便运行和调整参数。
- 预训练模型 - 提供预训练检查点和测试数据,便于快速实验和验证。
如果你对医疗成像的前沿技术感兴趣,或者正在寻找一种强大的工具来优化你的成像算法,那么这个项目绝对值得你尝试。引用这个项目及其相关研究,并为你的工作带来革命性的改变吧!
@inproceedings{
song2022solving,
title={Solving Inverse Problems in Medical Imaging with Score-Based Generative Models},
author={Yang Song and Liyue Shen and Lei Xing and Stefano Ermon},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=vaRCHVj0uGI}
}
@inproceedings{
song2021scorebased,
title={Score-Based Generative Modeling through Stochastic Differential Equations},
author={Yang Song and Jascha Sohl-Dickstein and Diederik P Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=PxTIG12RRHS}
}
立即加入,体验未来的医疗成像解决方案!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210