探索医疗成像的未来:使用分数基生成模型解决逆问题
2024-05-30 03:34:56作者:滑思眉Philip
探索医疗成像的未来:使用分数基生成模型解决逆问题
在这个快速发展的科技时代,医疗成像领域正迎来一场革新。由Yang Song, Liyue Shen, Lei Xing和Stefano Ermon等人提出的新项目,利用分数基生成模型(Score-Based Generative Models)解决了线性逆问题,为我们揭示了在医疗图像处理中的一种崭新可能。
项目简介
这个开源项目提供了一个基于JAX框架的代码库,用于在论文中描述的方法实现。该方法能够有效地应用于稀疏视图的计算机断层扫描(CT)、磁共振成像(MRI)以及CT成像中的金属伪影消除(MAR)。通过不依赖于物理测量过程的纯生成模型,该项目可在测试时快速适应不同的成像过程,无需重新训练模型,展现了出色的性能。
技术分析
项目采用了先进的分数基生成模型,结合随机微分方程(Score-Based Generative Modeling through Stochastic Differential Equations),以及改进的拉格朗日动态(Langevin)采样方法。此外,还包括一个投影条件优化策略(projection),以增强模型的适应性和效果。这种创新的方式使得模型即使在面对复杂的医疗成像挑战时也能保持高效与准确。
应用场景
这个项目不仅适用于重建任务,如从有限数据点恢复高质量的CT或MRI图像,还能够处理金属伪影等异常情况,提升医疗图像的质量,从而帮助医生更准确地进行诊断。由于其高度可扩展性,它有潜力被应用到各种医疗成像设备和技术上,推动医疗领域的进步。
项目特点
- 通用性 - 不需了解物理测量过程即可训练,适应性强。
- 灵活性 - 测试时快速适应不同成像过程,无须重新训练。
- 高效性 - 提供多种采样方法,如“Score SDE”、“Langevin”等,优化求解逆问题。
- 易于使用 - 提供配置文件和命令行接口,方便运行和调整参数。
- 预训练模型 - 提供预训练检查点和测试数据,便于快速实验和验证。
如果你对医疗成像的前沿技术感兴趣,或者正在寻找一种强大的工具来优化你的成像算法,那么这个项目绝对值得你尝试。引用这个项目及其相关研究,并为你的工作带来革命性的改变吧!
@inproceedings{
song2022solving,
title={Solving Inverse Problems in Medical Imaging with Score-Based Generative Models},
author={Yang Song and Liyue Shen and Lei Xing and Stefano Ermon},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=vaRCHVj0uGI}
}
@inproceedings{
song2021scorebased,
title={Score-Based Generative Modeling through Stochastic Differential Equations},
author={Yang Song and Jascha Sohl-Dickstein and Diederik P Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=PxTIG12RRHS}
}
立即加入,体验未来的医疗成像解决方案!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
209
84
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1