探索医疗图像分割的未来:SAMed——定制化Segment Anything模型
在医疗图像处理领域,高精度的图像分割是至关重要的,它可以帮助医生进行精确的诊断和手术规划。而今天,我们向您推荐一个创新的开源项目——SAMed(Segment Anything Model for Medical Image Segmentation)。这个项目基于Facebook Research的Segment Anything Model,为医疗图像的分割带来了全新的解决方案。
项目介绍
SAMed是一个致力于解决医疗图像分割问题的先进模型。它引入了低秩调整(LoRA)策略来微调预训练的大规模图像分割模型,并与提示编码器和掩模解码器共同学习,以适应医学图像的特点。通过这种方式,SAMed能够在保持模型大小相对较小的同时,实现与行业领先方法相媲美的性能。
项目技术分析
核心技术创新在于采用LoRA对Segment Anything Model的图像编码器进行微调,仅更新一小部分参数,从而降低了部署成本和存储负担。此外,SAMed还利用温暖启动(Warmup)策略和AdamW优化器来保证模型的收敛性和较低的损失。近期,作者更进一步推出了基于更大模型('vit_h'版本)的SAMed_h,其性能显著提升,但对资源的需求增加并不明显。
应用场景
SAMed适用于各种医疗图像的精细分割任务,包括但不限于多器官分割、肿瘤定位等。这些应用场景包括但不限于计算机辅助诊断、手术预规划以及医疗影像大数据分析。通过在线Colab演示,用户可以快速体验到SAMed的强大功能。
项目特点
- 高效微调:采用LoRA策略,只更新模型的一小部分参数,降低了训练复杂度。
- 强大性能:即使在基础版本下,也能达到与业内最佳方法相当的性能;升级后的'SAMed_h'版本性能更胜一筹。
- 灵活适用:适应性强,可应用于不同分辨率的医疗图像数据集。
- 友好部署:模型大小适中,便于实际环境中的部署和存储。
为了重现研究结果,项目提供了详细的说明和预处理脚本,方便用户快速上手。不仅如此,作者也承诺会继续更新项目,添加更多功能和数据支持。
如果你在寻找一种能够提升医疗图像处理效率且易于使用的工具,那么SAMed无疑是一个值得尝试的优秀选择。立即加入我们的社区,一起探索医疗图像分割的无限可能!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00