探索医疗图像分割的未来:SAMed——定制化Segment Anything模型
在医疗图像处理领域,高精度的图像分割是至关重要的,它可以帮助医生进行精确的诊断和手术规划。而今天,我们向您推荐一个创新的开源项目——SAMed(Segment Anything Model for Medical Image Segmentation)。这个项目基于Facebook Research的Segment Anything Model,为医疗图像的分割带来了全新的解决方案。
项目介绍
SAMed是一个致力于解决医疗图像分割问题的先进模型。它引入了低秩调整(LoRA)策略来微调预训练的大规模图像分割模型,并与提示编码器和掩模解码器共同学习,以适应医学图像的特点。通过这种方式,SAMed能够在保持模型大小相对较小的同时,实现与行业领先方法相媲美的性能。
项目技术分析
核心技术创新在于采用LoRA对Segment Anything Model的图像编码器进行微调,仅更新一小部分参数,从而降低了部署成本和存储负担。此外,SAMed还利用温暖启动(Warmup)策略和AdamW优化器来保证模型的收敛性和较低的损失。近期,作者更进一步推出了基于更大模型('vit_h'版本)的SAMed_h,其性能显著提升,但对资源的需求增加并不明显。
应用场景
SAMed适用于各种医疗图像的精细分割任务,包括但不限于多器官分割、肿瘤定位等。这些应用场景包括但不限于计算机辅助诊断、手术预规划以及医疗影像大数据分析。通过在线Colab演示,用户可以快速体验到SAMed的强大功能。
项目特点
- 高效微调:采用LoRA策略,只更新模型的一小部分参数,降低了训练复杂度。
- 强大性能:即使在基础版本下,也能达到与业内最佳方法相当的性能;升级后的'SAMed_h'版本性能更胜一筹。
- 灵活适用:适应性强,可应用于不同分辨率的医疗图像数据集。
- 友好部署:模型大小适中,便于实际环境中的部署和存储。
为了重现研究结果,项目提供了详细的说明和预处理脚本,方便用户快速上手。不仅如此,作者也承诺会继续更新项目,添加更多功能和数据支持。
如果你在寻找一种能够提升医疗图像处理效率且易于使用的工具,那么SAMed无疑是一个值得尝试的优秀选择。立即加入我们的社区,一起探索医疗图像分割的无限可能!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00