OpenFold 项目使用教程
1. 项目介绍
OpenFold 是一个基于 PyTorch 的开源项目,旨在忠实且可训练地再现 DeepMind 的 AlphaFold 2 模型。该项目不仅提供了与 AlphaFold 2 相同的模型架构,还优化了内存效率和 GPU 友好性,使得在现代 GPU 上进行训练和推理更加高效。
OpenFold 的目标是提供一个开源的、可扩展的蛋白质结构预测工具,使得学术界和工业界的研究人员能够自由地使用、改进和贡献代码。通过 OpenFold,用户可以利用现有的预训练权重快速启动模型,并根据需要进行微调。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.8 或更高版本
- PyTorch 1.8 或更高版本
- CUDA 11.1 或更高版本(如果使用 GPU)
2.2 安装步骤
-
克隆仓库:
git clone https://github.com/aqlaboratory/openfold.git cd openfold -
安装依赖:
pip install -r requirements.txt -
下载预训练模型权重:
python scripts/download_alphafold_params.py -
运行推理:
python run_pretrained_openfold.py \ --data_dir /path/to/data \ --output_dir /path/to/output \ --model_device cuda:0 \ --config_preset model_1
2.3 训练模型
如果您希望从头开始训练模型,可以使用以下命令:
python train_openfold.py \
--data_dir /path/to/data \
--output_dir /path/to/output \
--config_preset model_1 \
--train_epochs 10
3. 应用案例和最佳实践
3.1 蛋白质结构预测
OpenFold 主要用于蛋白质结构的预测。通过输入蛋白质的氨基酸序列,模型可以预测出蛋白质的三维结构。这对于理解蛋白质的功能和设计新的药物具有重要意义。
3.2 药物发现
在药物发现过程中,了解目标蛋白质的结构是至关重要的。OpenFold 可以帮助研究人员快速预测蛋白质结构,从而加速药物筛选和设计过程。
3.3 学术研究
OpenFold 的开源性质使得学术研究人员可以自由地使用和改进模型。通过参与 OpenFold 社区,研究人员可以贡献新的数据集、改进模型架构,并推动蛋白质结构预测领域的发展。
4. 典型生态项目
4.1 OpenFold-Multimer
OpenFold-Multimer 是 OpenFold 的一个扩展项目,专门用于预测蛋白质-蛋白质相互作用和多聚体复合物的结构。该项目提供了更高精度的模型,适用于复杂的蛋白质系统研究。
4.2 OpenFold-SoloSeq
OpenFold-SoloSeq 是另一个扩展项目,它通过消除对多序列比对(MSA)的依赖,进一步简化了蛋白质结构预测的流程。该项目特别适用于那些缺乏大量同源序列的蛋白质。
4.3 OpenFold-SmallMolecule
OpenFold-SmallMolecule 项目正在开发中,旨在支持蛋白质-小分子相互作用的预测。这将有助于药物设计和分子对接研究。
通过这些生态项目,OpenFold 不仅提供了基础的蛋白质结构预测工具,还扩展了其在药物发现、学术研究等领域的应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00