首页
/ OpenFold 项目使用教程

OpenFold 项目使用教程

2024-09-13 16:37:04作者:何将鹤

1. 项目介绍

OpenFold 是一个基于 PyTorch 的开源项目,旨在忠实且可训练地再现 DeepMind 的 AlphaFold 2 模型。该项目不仅提供了与 AlphaFold 2 相同的模型架构,还优化了内存效率和 GPU 友好性,使得在现代 GPU 上进行训练和推理更加高效。

OpenFold 的目标是提供一个开源的、可扩展的蛋白质结构预测工具,使得学术界和工业界的研究人员能够自由地使用、改进和贡献代码。通过 OpenFold,用户可以利用现有的预训练权重快速启动模型,并根据需要进行微调。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统已经安装了以下依赖:

  • Python 3.8 或更高版本
  • PyTorch 1.8 或更高版本
  • CUDA 11.1 或更高版本(如果使用 GPU)

2.2 安装步骤

  1. 克隆仓库

    git clone https://github.com/aqlaboratory/openfold.git
    cd openfold
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 下载预训练模型权重

    python scripts/download_alphafold_params.py
    
  4. 运行推理

    python run_pretrained_openfold.py \
        --data_dir /path/to/data \
        --output_dir /path/to/output \
        --model_device cuda:0 \
        --config_preset model_1
    

2.3 训练模型

如果您希望从头开始训练模型,可以使用以下命令:

python train_openfold.py \
    --data_dir /path/to/data \
    --output_dir /path/to/output \
    --config_preset model_1 \
    --train_epochs 10

3. 应用案例和最佳实践

3.1 蛋白质结构预测

OpenFold 主要用于蛋白质结构的预测。通过输入蛋白质的氨基酸序列,模型可以预测出蛋白质的三维结构。这对于理解蛋白质的功能和设计新的药物具有重要意义。

3.2 药物发现

在药物发现过程中,了解目标蛋白质的结构是至关重要的。OpenFold 可以帮助研究人员快速预测蛋白质结构,从而加速药物筛选和设计过程。

3.3 学术研究

OpenFold 的开源性质使得学术研究人员可以自由地使用和改进模型。通过参与 OpenFold 社区,研究人员可以贡献新的数据集、改进模型架构,并推动蛋白质结构预测领域的发展。

4. 典型生态项目

4.1 OpenFold-Multimer

OpenFold-Multimer 是 OpenFold 的一个扩展项目,专门用于预测蛋白质-蛋白质相互作用和多聚体复合物的结构。该项目提供了更高精度的模型,适用于复杂的蛋白质系统研究。

4.2 OpenFold-SoloSeq

OpenFold-SoloSeq 是另一个扩展项目,它通过消除对多序列比对(MSA)的依赖,进一步简化了蛋白质结构预测的流程。该项目特别适用于那些缺乏大量同源序列的蛋白质。

4.3 OpenFold-SmallMolecule

OpenFold-SmallMolecule 项目正在开发中,旨在支持蛋白质-小分子相互作用的预测。这将有助于药物设计和分子对接研究。

通过这些生态项目,OpenFold 不仅提供了基础的蛋白质结构预测工具,还扩展了其在药物发现、学术研究等领域的应用。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5