首页
/ 探索高效神经架构:SGAS —— 序列贪婪架构搜索

探索高效神经架构:SGAS —— 序列贪婪架构搜索

2024-06-07 22:10:25作者:史锋燃Gardner

在深度学习领域,神经网络架构的设计是关键一环,但手动设计高效架构往往耗时且难以优化。为此,我们推荐一个创新的开源项目——Sequential Greedy Architecture Search (SGAS),它通过序列贪婪策略解决了这一问题,能够在最小计算成本下寻找出图像分类、点云分类和蛋白质相互作用图节点分类等任务的最新最优架构。

1、项目介绍

SGAS是一种针对神经架构搜索(NAS)的新方法,旨在缓解在搜索阶段表现优异但在评估阶段效果下降的问题。它将搜索过程分解为子问题,并以贪心方式选择和剪枝候选操作。项目提供了用于卷积神经网络(CNN)和图卷积网络(GCN)的代码实现,以及详尽的实验结果来证明其有效性。

项目主页:https://www.deepgcns.org/auto/sgas
论文链接:https://arxiv.org/abs/1912.00195
幻灯片展示:https://docs.google.com/presentation/d/1f2djE-yfjXJjF3G-6HDH7v_NNWDEeapsbGAr7bJKtBY/present?slide=id.g6bb5d0ad3a_2_45
Python代码仓库:https://github.com/lightaime/sgas

2、项目技术分析

SGAS的核心在于它的序列贪婪算法,它将大规模的架构搜索问题转化为一系列小规模的决策问题。这种方法允许模型逐步构建并优化结构,从而在提高准确性和减少训练时间之间找到平衡。在CNN和GCN上的应用表明,SGAS能够有效地发现高精度的网络架构。

3、项目及技术应用场景

  • 图像分类:对于大规模图像识别任务,SGAS可以搜索出能在ImageNet等数据集上达到SOTA性能的CNN架构。
  • 点云分类:在三维点云数据处理中,SGAS有助于构建适用于复杂几何结构识别的网络。
  • 节点分类:在生物信息学领域,SGAS可以应用于蛋白质相互作用图,寻找最佳的GCN架构进行节点分类。

4、项目特点

  • 效率:相比于其他NAS方法,SGAS显著减少了计算资源需求。
  • 泛化性:支持CNN和GCN的架构搜索,可广泛应用于多种任务。
  • 完整性:提供完整的从环境配置到训练、评估和可视化的一站式解决方案。
  • 可复现性:项目提供预训练模型,便于验证和比较结果。
  • 易用性:清晰的代码结构和详细文档使新手也能快速上手。

如果你对提升模型性能或减小计算成本感兴趣,不妨尝试一下SGAS。只需按照提供的conda环境安装脚本设置环境,然后参考cnngcn目录下的指南,即可开始你的架构探索之旅!

最后,别忘了引用他们的工作,感谢所有贡献者:

@inproceedings{li2019sgas,
  title={SGAS: Sequential Greedy Architecture Search},
  author={Li, Guohao and Qian, Guocheng and Delgadillo, Itzel C and M{\"u}ller, Matthias and Thabet, Ali and Ghanem, Bernard},
  booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020},
}

有任何问题,请联系Guohao LiGuocheng Qian。让我们一起探索更高效、更智能的神经网络架构吧!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5