探索高效神经架构:SGAS —— 序列贪婪架构搜索
在深度学习领域,神经网络架构的设计是关键一环,但手动设计高效架构往往耗时且难以优化。为此,我们推荐一个创新的开源项目——Sequential Greedy Architecture Search (SGAS),它通过序列贪婪策略解决了这一问题,能够在最小计算成本下寻找出图像分类、点云分类和蛋白质相互作用图节点分类等任务的最新最优架构。
1、项目介绍
SGAS是一种针对神经架构搜索(NAS)的新方法,旨在缓解在搜索阶段表现优异但在评估阶段效果下降的问题。它将搜索过程分解为子问题,并以贪心方式选择和剪枝候选操作。项目提供了用于卷积神经网络(CNN)和图卷积网络(GCN)的代码实现,以及详尽的实验结果来证明其有效性。
项目主页:https://www.deepgcns.org/auto/sgas
论文链接:https://arxiv.org/abs/1912.00195
幻灯片展示:https://docs.google.com/presentation/d/1f2djE-yfjXJjF3G-6HDH7v_NNWDEeapsbGAr7bJKtBY/present?slide=id.g6bb5d0ad3a_2_45
Python代码仓库:https://github.com/lightaime/sgas
2、项目技术分析
SGAS的核心在于它的序列贪婪算法,它将大规模的架构搜索问题转化为一系列小规模的决策问题。这种方法允许模型逐步构建并优化结构,从而在提高准确性和减少训练时间之间找到平衡。在CNN和GCN上的应用表明,SGAS能够有效地发现高精度的网络架构。
3、项目及技术应用场景
- 图像分类:对于大规模图像识别任务,SGAS可以搜索出能在ImageNet等数据集上达到SOTA性能的CNN架构。
- 点云分类:在三维点云数据处理中,SGAS有助于构建适用于复杂几何结构识别的网络。
- 节点分类:在生物信息学领域,SGAS可以应用于蛋白质相互作用图,寻找最佳的GCN架构进行节点分类。
4、项目特点
- 效率:相比于其他NAS方法,SGAS显著减少了计算资源需求。
- 泛化性:支持CNN和GCN的架构搜索,可广泛应用于多种任务。
- 完整性:提供完整的从环境配置到训练、评估和可视化的一站式解决方案。
- 可复现性:项目提供预训练模型,便于验证和比较结果。
- 易用性:清晰的代码结构和详细文档使新手也能快速上手。
如果你对提升模型性能或减小计算成本感兴趣,不妨尝试一下SGAS。只需按照提供的conda环境安装脚本设置环境,然后参考cnn和gcn目录下的指南,即可开始你的架构探索之旅!
最后,别忘了引用他们的工作,感谢所有贡献者:
@inproceedings{li2019sgas,
title={SGAS: Sequential Greedy Architecture Search},
author={Li, Guohao and Qian, Guocheng and Delgadillo, Itzel C and M{\"u}ller, Matthias and Thabet, Ali and Ghanem, Bernard},
booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2020},
}
有任何问题,请联系Guohao Li和Guocheng Qian。让我们一起探索更高效、更智能的神经网络架构吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00