LIKWID性能分析工具中Marker API与OpenMP结合使用的性能问题分析
2025-07-08 03:47:20作者:史锋燃Gardner
问题现象
在使用LIKWID性能分析工具的Marker API与OpenMP并行代码结合时,用户观察到显著的运行时延长现象。测试案例显示,当使用likwid-perfctr -m
参数运行时,程序执行时间比不使用该参数时长40倍。值得注意的是,虽然测量结果准确,但应用程序似乎经历了大量停顿。
环境配置
- 硬件平台:Intel Sapphire Rapids架构(Xeon Platinum 8468处理器),双路48核配置
- 操作系统:Rocky Linux 8.10
- 工具版本:LIKWID 5.3.0(包含截至commit d8fea29的修复补丁)
- 编译器:Intel oneAPI DPC++/C++ Compiler 2023.1.0
- 测试用例:基于LIKWID官方Marker教程代码及稀疏矩阵向量乘法基准测试
技术背景
LIKWID的Marker API设计用于在特定代码区域进行细粒度性能监测。当与OpenMP结合使用时,每个线程需要独立初始化性能计数器访问机制。在accessdaemon模式下,这一过程涉及:
- 启动独立的守护进程
- 建立UNIX域套接字通信
- 针对Sapphire Rapids架构的特殊发现机制
问题根源分析
-
初始化开销集中化:虽然Marker API理论上支持多线程并发访问,但实际初始化过程存在隐式串行化现象。特别是在Rocky Linux环境下,守护进程启动和通信建立的开销被放大。
-
架构特定因素:Intel Sapphire Rapids引入的Uncore发现机制在实现上较为复杂,增加了初始化阶段的处理时间。
-
线程数敏感:问题严重性与线程数量呈正相关,96线程环境下注册阶段耗时可达233秒。
解决方案与优化建议
-
版本升级:LIKWID的master分支已对该问题进行优化,建议等待下一正式版本发布或使用最新开发版。
-
编码实践优化:
- 移除冗余的
LIKWID_MARKER_THREADINIT
调用 - 将
LIKWID_MARKER_REGISTER
移出关键性能区域 - 避免在并行区域内直接调用注册函数
- 移除冗余的
-
替代方案:对于短时运行的测试用例,可考虑:
- 不使用Marker API模式
- 增大测试规模以稀释初始化开销
- 采用进程级而非线程级的性能监控
潜在改进方向
代码审查发现access_client.c中存在潜在的内存管理问题,虽然当前逻辑避免了实际泄漏,但建议:
- 添加互斥锁保护共享资源
- 优化守护进程的并行启动机制
- 针对特定Linux发行版进行调优
结论
该问题本质上是工具在特定环境下的初始化效率问题,不影响实际测量数据的准确性。对于长期运行的HPC应用,初始化开销可被计算过程稀释;但对于短时微基准测试,建议采用替代方案或等待工具新版本发布。此案例也提醒我们,性能分析工具本身的开销需要在特定环境下进行充分评估。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194