使用强化学习玩 Pokémon 红版教程
本教程将引导您体验通过强化学习(Reinforcement Learning, RL)训练AI来玩经典游戏《Pokémon 红版》的过程。此项目托管于 GitHub,并提供了详细的代码和说明。
1. 项目目录结构及介绍
项目的主要结构如下:
assets
:可能存放游戏资源或辅助训练的资产。baselines
:包含基础训练模型的脚本,用于训练和测试AI。run_pretrained_interactive.py
:运行预训练模型进行交互。run_baseline_parallel_fast.py
和baseline_fast_v2.py
:用于训练新模型的不同版本脚本。
clip_experiment
:可能涉及剪辑实验相关的文件或数据。visualization
:可视化工具和代码,帮助理解训练过程。.gitignore
:Git忽略文件,指定不应被纳入版本控制的文件类型或路径。LICENSE
:MIT许可证,规定了软件的使用权限。README.md
:项目的核心说明文档。windows-setup-guide.md
:专为Windows系统提供的设置指南。
2. 项目的启动文件介绍
运行预训练模型
主要的启动文件是位于 baselines
目录下的 run_pretrained_interactive.py
。这个脚本允许您无需重新训练,即可加载预训练的AI模型,并与之互动。用户可以通过键盘输入(箭头键和A、B按钮模拟键)控制游戏进程,体验AI的行为。
训练新模型
若您希望训练自己的模型,可以使用 run_baseline_parallel_fast.py
或 baseline_fast_v2.py
。这些脚本包含了模型训练的基本流程,适合有一定基础的开发者调整参数和策略。
3. 项目的配置文件介绍
虽然项目中没有明确指出特定的“配置文件”,但配置主要通过脚本内部的变量和参数设定完成。例如,在训练脚本中,您可能会遇到如学习率、环境配置、奖励机制等关键参数。对于环境设置和依赖项,更多细节包含在 requirements.txt
文件中,它列出了运行项目所需的Python包。
为了自定义您的训练环境或行为,您需要直接编辑相应的Python脚本。例如,游戏状态的处理逻辑、训练循环的配置,或是是否开启WandB日志记录,都在脚本内以代码形式进行配置。
开始之前
确保遵循Windows Setup Guide(如果使用Windows系统),并且安装必要的依赖,特别是SDL库和ffmpeg,确保它们在命令行中可访问。项目要求Python 3.10及以上版本,并且需要一个合法的《Pokémon 红版》ROM,其SHA1校验码需匹配文档提供的值。
通过遵循上述步骤和阅读项目内的文档,您就能开始探索如何让AI学会挑战《Pokémon 红版》的乐趣之旅了。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09