PokemonRedExperiments 项目教程
2024-09-17 18:00:03作者:蔡丛锟
项目介绍
PokemonRedExperiments 是一个使用 Python 和强化学习(Reinforcement Learning, RL)技术训练 AI 玩《宝可梦红》的开源项目。该项目由 PWhiddy 开发,旨在通过强化学习算法从零开始训练 AI,使其能够自主玩《宝可梦红》游戏。项目不仅提供了训练 AI 的代码,还包含了详细的教程和视频讲解,帮助用户理解并运行该项目。
项目快速启动
环境准备
- Python 3.10+:建议使用 Python 3.10 或更高版本。
- FFmpeg:确保 FFmpeg 已安装并可在命令行中使用。
- 合法获取的《宝可梦红》ROM:将 ROM 文件命名为
PokemonRed.gb并放置在项目根目录下。
安装依赖
# 克隆项目
git clone https://github.com/PWhiddy/PokemonRedExperiments.git
cd PokemonRedExperiments
# 安装依赖
pip install -r requirements.txt
运行预训练模型
# 进入 baselines 目录
cd baselines
# 运行预训练模型
python run_pretrained_interactive.py
训练模型
# 运行训练脚本
python run_baseline_parallel_fast.py
应用案例和最佳实践
应用案例
PokemonRedExperiments 项目可以应用于以下场景:
- 强化学习研究:作为强化学习算法的实验平台,研究 AI 在复杂游戏环境中的表现。
- 游戏 AI 开发:为游戏开发者提供一个参考,如何使用强化学习技术开发游戏 AI。
- 教育工具:作为教学工具,帮助学生理解强化学习的基本概念和实现方法。
最佳实践
- 数据收集与分析:在训练过程中,定期收集和分析 AI 的表现数据,以便调整训练策略。
- 奖励机制优化:根据 AI 的表现,不断优化奖励机制,使其能够更快地学习和适应游戏环境。
- 多版本迭代:通过多次迭代训练,逐步提升 AI 的性能,最终达到预期的游戏目标。
典型生态项目
PyBoy
PyBoy 是一个用于模拟《宝可梦红》的 Python 库,PokemonRedExperiments 项目使用了 PyBoy 来模拟游戏环境,使得 AI 能够在模拟器中进行训练和测试。
Stable Baselines 3
Stable Baselines 3 是一个强化学习算法的库,提供了多种强化学习算法的实现。PokemonRedExperiments 项目使用了 Stable Baselines 3 中的算法来训练 AI。
TensorBoard
TensorBoard 是一个用于可视化训练过程的工具,PokemonRedExperiments 项目使用 TensorBoard 来跟踪和可视化 AI 的训练进度。
通过以上模块的介绍和实践,您可以快速上手 PokemonRedExperiments 项目,并深入了解强化学习在游戏 AI 开发中的应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1