Vizro项目中实现初始过滤与图表交互过滤的协同工作
2025-06-27 18:26:54作者:傅爽业Veleda
在数据可视化仪表盘开发中,初始数据过滤与交互式过滤的协同工作是一个常见需求。本文将以Vizro项目为例,深入探讨如何实现AgGrid表格的初始"Total"过滤与图表点击交互过滤的无缝结合。
问题背景分析
在开发数据仪表盘时,我们经常遇到这样的场景:需要表格在初始加载时显示汇总数据(如"Total"行),同时允许用户通过点击图表来查看特定分类的详细数据。这种需求在业务分析场景中尤为常见,比如销售数据按区域汇总后,又需要查看特定区域的明细。
技术难点解析
原始方案直接使用AgGrid的filterModel属性设置初始过滤条件,同时通过filter_interaction实现图表点击过滤。这种方法存在一个关键问题:两种过滤机制会相互覆盖而不是协同工作。具体表现为:
- 初始加载时filterModel强制显示"Total"数据
- 图表点击触发filter_interaction后,客户端filterModel仍然保持"Total"条件
- 最终导致无数据显示,因为数据无法同时满足两个矛盾条件
解决方案实现
核心思路
采用自定义action替代内置filter_interaction,直接操作AgGrid的filterModel属性。这种方法可以:
- 保留初始过滤条件
- 在用户交互时动态更新过滤条件
- 避免过滤条件的冲突
具体实现步骤
- 创建自定义action函数:
from vizro.models.types import capture
@capture("action")
def overwrite_filter_model(circunscripcion_click_data):
extracted_value = circunscripcion_click_data["points"][0]["customdata"][0]
return {"Circunscripción": {"type": "equals", "filter": extracted_value}}
- 配置Graph组件:
graph_circunscripcion = vm.Graph(
id="fig_bar",
figure=fig_bar,
actions=[
vm.Action(
function=overwrite_filter_model(),
inputs=["fig_bar.clickData"],
outputs=["underlying_mi_tabla_aggrid.filterModel"],
)
]
)
- 设置AgGrid组件:
tabla_aggrid = vm.AgGrid(
id="mi_tabla_aggrid",
figure=dash_ag_grid(
id="underlying_mi_tabla_aggrid",
data_frame=df_table,
columnDefs=columnDefs,
filterModel={"Circunscripción": {"type": "equals", "filter": "Total"}}
)
)
关键点说明
- 组件ID设置:必须为AgGrid的底层组件设置独立ID(underlying_mi_tabla_aggrid),这是action能够正确操作filterModel的关键
- 数据流设计:自定义action明确指定了输入(图表点击数据)和输出(表格过滤模型)的对应关系
- 类型提示处理:在实际应用中建议添加Optional类型提示以避免静态分析工具报错
方案优势分析
相比原始方案,这种实现方式具有以下优势:
- 过滤条件统一管理:所有过滤操作都通过filterModel属性完成,避免多套过滤系统冲突
- 交互响应明确:用户点击图表后,表格会立即显示对应分类的全部数据
- 代码可维护性强:自定义action逻辑清晰,易于扩展和修改
实际应用建议
在实际项目开发中,可以进一步优化此方案:
- 添加重置按钮,方便用户返回"Total"视图
- 考虑添加多条件过滤支持,如同时按时间和区域过滤
- 对自定义action添加异常处理,增强鲁棒性
- 可以封装成可复用组件,提高开发效率
这种初始过滤与交互过滤协同工作的模式,可以广泛应用于各种业务分析场景,为数据可视化仪表盘提供更流畅的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896