Vizro项目中实现初始过滤与图表交互过滤的协同工作
2025-06-27 20:22:30作者:傅爽业Veleda
在数据可视化仪表盘开发中,初始数据过滤与交互式过滤的协同工作是一个常见需求。本文将以Vizro项目为例,深入探讨如何实现AgGrid表格的初始"Total"过滤与图表点击交互过滤的无缝结合。
问题背景分析
在开发数据仪表盘时,我们经常遇到这样的场景:需要表格在初始加载时显示汇总数据(如"Total"行),同时允许用户通过点击图表来查看特定分类的详细数据。这种需求在业务分析场景中尤为常见,比如销售数据按区域汇总后,又需要查看特定区域的明细。
技术难点解析
原始方案直接使用AgGrid的filterModel属性设置初始过滤条件,同时通过filter_interaction实现图表点击过滤。这种方法存在一个关键问题:两种过滤机制会相互覆盖而不是协同工作。具体表现为:
- 初始加载时filterModel强制显示"Total"数据
- 图表点击触发filter_interaction后,客户端filterModel仍然保持"Total"条件
- 最终导致无数据显示,因为数据无法同时满足两个矛盾条件
解决方案实现
核心思路
采用自定义action替代内置filter_interaction,直接操作AgGrid的filterModel属性。这种方法可以:
- 保留初始过滤条件
- 在用户交互时动态更新过滤条件
- 避免过滤条件的冲突
具体实现步骤
- 创建自定义action函数:
from vizro.models.types import capture
@capture("action")
def overwrite_filter_model(circunscripcion_click_data):
extracted_value = circunscripcion_click_data["points"][0]["customdata"][0]
return {"Circunscripción": {"type": "equals", "filter": extracted_value}}
- 配置Graph组件:
graph_circunscripcion = vm.Graph(
id="fig_bar",
figure=fig_bar,
actions=[
vm.Action(
function=overwrite_filter_model(),
inputs=["fig_bar.clickData"],
outputs=["underlying_mi_tabla_aggrid.filterModel"],
)
]
)
- 设置AgGrid组件:
tabla_aggrid = vm.AgGrid(
id="mi_tabla_aggrid",
figure=dash_ag_grid(
id="underlying_mi_tabla_aggrid",
data_frame=df_table,
columnDefs=columnDefs,
filterModel={"Circunscripción": {"type": "equals", "filter": "Total"}}
)
)
关键点说明
- 组件ID设置:必须为AgGrid的底层组件设置独立ID(underlying_mi_tabla_aggrid),这是action能够正确操作filterModel的关键
- 数据流设计:自定义action明确指定了输入(图表点击数据)和输出(表格过滤模型)的对应关系
- 类型提示处理:在实际应用中建议添加Optional类型提示以避免静态分析工具报错
方案优势分析
相比原始方案,这种实现方式具有以下优势:
- 过滤条件统一管理:所有过滤操作都通过filterModel属性完成,避免多套过滤系统冲突
- 交互响应明确:用户点击图表后,表格会立即显示对应分类的全部数据
- 代码可维护性强:自定义action逻辑清晰,易于扩展和修改
实际应用建议
在实际项目开发中,可以进一步优化此方案:
- 添加重置按钮,方便用户返回"Total"视图
- 考虑添加多条件过滤支持,如同时按时间和区域过滤
- 对自定义action添加异常处理,增强鲁棒性
- 可以封装成可复用组件,提高开发效率
这种初始过滤与交互过滤协同工作的模式,可以广泛应用于各种业务分析场景,为数据可视化仪表盘提供更流畅的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133