Rancher项目中AWS EC2下游RKE2集群激活问题解析
问题背景
在Rancher v2.11.0-alpha11版本中,用户尝试在AWS EC2上部署下游RKE2集群时遇到了集群无法激活的问题。具体表现为集群状态长时间停留在"Updating"状态,并显示等待代理检查并应用初始计划的提示信息。
问题现象
当管理员通过Rancher UI创建AWS EC2 RKE2集群时,按照正常流程填写所有必要信息后,集群无法在预期时间内(通常10分钟左右)进入"Active"状态。系统日志显示集群卡在配置引导节点阶段,提示"waiting for agent to check in and apply initial plan"。
根本原因分析
经过深入调查,发现问题源于CA证书校验失败。具体机制如下:
-
Rancher部署配置中固定包含了hostPort: 6666的设置,这导致系统内部API TLS标志(tls.InternalAPI)被自动设置为true。
-
当tls.InternalAPI为true时,Rancher会使用内部CA证书(internal-cacerts)而非标准CA证书(cacerts)进行安全验证。
-
然而,系统代理安装脚本(install.sh)中仍然配置了验证标准CA证书的校验和(CATTLE_CA_CHECKSUM),与实际获取的内部CA证书不匹配。
-
这种不匹配导致证书验证失败,进而阻止了集群节点的正确初始化和激活。
技术细节
在问题复现过程中,技术人员发现以下关键证据:
- 从/var/log/cloud-init-output.log日志中可见明确的证书校验失败信息:
[ERROR] Configured cacerts checksum (2711819a0d05774592bfb84adafd166ebbaaec57eaaea6e0a3e26ccc5c1012fa) does not match given --ca-checksum (215197b7afc0589014bb44f09bfc999a8971fba147a9e8de32e4df0971108a11)
-
通过检查安装脚本/usr/local/custom_script/install.sh,确认其中配置的CATTLE_CA_CHECKSUM值与实际从Rancher服务器获取的证书校验和不一致。
-
手动修正安装脚本中的CA校验和后,集群能够正常部署,这验证了问题的根本原因确实是证书校验不匹配。
解决方案
Rancher开发团队在后续版本(v2.11.0-alpha13)中修复了此问题。修复方案主要包括:
-
统一证书校验逻辑,确保系统代理安装脚本能够正确处理内部和标准CA证书的验证。
-
优化证书获取机制,根据tls.InternalAPI标志动态选择正确的证书源。
-
增强错误处理逻辑,在证书校验失败时提供更明确的错误信息和解决方案提示。
验证结果
在Rancher v2.11.0-alpha13版本中,测试人员确认:
-
AWS EC2下游RKE2集群能够正常部署并自动激活。
-
集群节点能够正确完成初始化,不再出现卡在"Updating"状态的情况。
-
系统日志中不再出现证书校验失败的报错信息。
-
集群版本信息显示为预期值(v1.32.2+rke2r1),所有组件正常运行。
最佳实践建议
对于使用Rancher管理Kubernetes集群的管理员,建议:
-
始终使用经过充分测试的稳定版本,特别是在生产环境中。
-
部署前检查Rancher服务器的证书配置,确保其完整性和正确性。
-
关注部署日志,特别是/var/log/cloud-init-output.log中的关键信息。
-
对于自定义证书环境,提前验证证书链的完整性和浏览器兼容性。
-
定期更新Rancher和下游集群到最新稳定版本,以获取安全修复和功能改进。
通过理解这一问题的产生和解决过程,用户可以更深入地掌握Rancher集群部署机制,并在遇到类似问题时能够快速定位和解决。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









