Rancher项目中AWS EC2下游RKE2集群激活问题解析
问题背景
在Rancher v2.11.0-alpha11版本中,用户尝试在AWS EC2上部署下游RKE2集群时遇到了集群无法激活的问题。具体表现为集群状态长时间停留在"Updating"状态,并显示等待代理检查并应用初始计划的提示信息。
问题现象
当管理员通过Rancher UI创建AWS EC2 RKE2集群时,按照正常流程填写所有必要信息后,集群无法在预期时间内(通常10分钟左右)进入"Active"状态。系统日志显示集群卡在配置引导节点阶段,提示"waiting for agent to check in and apply initial plan"。
根本原因分析
经过深入调查,发现问题源于CA证书校验失败。具体机制如下:
-
Rancher部署配置中固定包含了hostPort: 6666的设置,这导致系统内部API TLS标志(tls.InternalAPI)被自动设置为true。
-
当tls.InternalAPI为true时,Rancher会使用内部CA证书(internal-cacerts)而非标准CA证书(cacerts)进行安全验证。
-
然而,系统代理安装脚本(install.sh)中仍然配置了验证标准CA证书的校验和(CATTLE_CA_CHECKSUM),与实际获取的内部CA证书不匹配。
-
这种不匹配导致证书验证失败,进而阻止了集群节点的正确初始化和激活。
技术细节
在问题复现过程中,技术人员发现以下关键证据:
- 从/var/log/cloud-init-output.log日志中可见明确的证书校验失败信息:
[ERROR] Configured cacerts checksum (2711819a0d05774592bfb84adafd166ebbaaec57eaaea6e0a3e26ccc5c1012fa) does not match given --ca-checksum (215197b7afc0589014bb44f09bfc999a8971fba147a9e8de32e4df0971108a11)
-
通过检查安装脚本/usr/local/custom_script/install.sh,确认其中配置的CATTLE_CA_CHECKSUM值与实际从Rancher服务器获取的证书校验和不一致。
-
手动修正安装脚本中的CA校验和后,集群能够正常部署,这验证了问题的根本原因确实是证书校验不匹配。
解决方案
Rancher开发团队在后续版本(v2.11.0-alpha13)中修复了此问题。修复方案主要包括:
-
统一证书校验逻辑,确保系统代理安装脚本能够正确处理内部和标准CA证书的验证。
-
优化证书获取机制,根据tls.InternalAPI标志动态选择正确的证书源。
-
增强错误处理逻辑,在证书校验失败时提供更明确的错误信息和解决方案提示。
验证结果
在Rancher v2.11.0-alpha13版本中,测试人员确认:
-
AWS EC2下游RKE2集群能够正常部署并自动激活。
-
集群节点能够正确完成初始化,不再出现卡在"Updating"状态的情况。
-
系统日志中不再出现证书校验失败的报错信息。
-
集群版本信息显示为预期值(v1.32.2+rke2r1),所有组件正常运行。
最佳实践建议
对于使用Rancher管理Kubernetes集群的管理员,建议:
-
始终使用经过充分测试的稳定版本,特别是在生产环境中。
-
部署前检查Rancher服务器的证书配置,确保其完整性和正确性。
-
关注部署日志,特别是/var/log/cloud-init-output.log中的关键信息。
-
对于自定义证书环境,提前验证证书链的完整性和浏览器兼容性。
-
定期更新Rancher和下游集群到最新稳定版本,以获取安全修复和功能改进。
通过理解这一问题的产生和解决过程,用户可以更深入地掌握Rancher集群部署机制,并在遇到类似问题时能够快速定位和解决。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00