OpenGL 遮挡剔除示例项目教程
1. 项目介绍
gl_occlusion_culling 是一个基于 OpenGL 的遮挡剔除(Occlusion Culling)示例项目,由 NVIDIA 的 nvpro-samples 团队开发。该项目展示了如何使用着色器批量处理遮挡剔除,而不是依赖于单个的遮挡查询。遮挡剔除是一种优化技术,用于减少渲染的物体数量,从而提高渲染性能。该项目利用了 GL_ARB_multi_draw_indirect 扩展来实现无延迟的遮挡剔除,并展示了多种遮挡剔除算法和结果处理方法。
2. 项目快速启动
2.1 环境准备
确保你的开发环境满足以下要求:
- 支持 OpenGL 4.x 的显卡
- 安装了 CMake 和 Git
- 安装了必要的开发工具(如 Visual Studio 或 GCC)
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/nvpro-samples/gl_occlusion_culling.git
cd gl_occlusion_culling
2.3 构建项目
使用 CMake 生成构建文件并编译项目:
mkdir build
cd build
cmake ..
make
2.4 运行示例
编译完成后,运行生成的可执行文件:
./occlusion_culling
3. 应用案例和最佳实践
3.1 应用案例
遮挡剔除技术在以下场景中特别有用:
- 大规模场景渲染:在包含大量物体的场景中,遮挡剔除可以显著减少渲染的物体数量,从而提高帧率。
- 实时渲染:在需要高帧率的实时应用中,如游戏和模拟器,遮挡剔除可以减少不必要的渲染开销。
3.2 最佳实践
- 选择合适的遮挡剔除算法:根据场景的特点选择合适的遮挡剔除算法。例如,对于静态场景,可以使用基于深度缓冲区的遮挡剔除;对于动态场景,可以使用基于几何体的遮挡剔除。
- 优化遮挡剔除结果处理:使用 GPU 原子操作和间接绘制技术来处理遮挡剔除结果,避免 CPU 和 GPU 之间的同步开销。
- 结合其他优化技术:遮挡剔除可以与其他优化技术(如视锥体剔除和细节层次(LOD))结合使用,进一步提高渲染性能。
4. 典型生态项目
4.1 nvpro_core
nvpro_core 是 nvpro-samples 项目的基础库,提供了许多常用的工具和功能,如数学库、OpenGL 扩展支持、调试工具等。gl_occlusion_culling 项目依赖于 nvpro_core,因此在构建和运行该项目之前,需要确保 nvpro_core 已经正确配置。
4.2 gl_commandlist_basic
gl_commandlist_basic 是另一个 nvpro-samples 项目,展示了如何使用 NV_command_list 扩展来优化 OpenGL 渲染命令的组织和执行。NV_command_list 扩展可以与遮挡剔除技术结合使用,进一步提高渲染性能。
4.3 gl_cadscene_rendertechniques
gl_cadscene_rendertechniques 项目展示了如何在复杂的 CAD 场景中应用多种渲染技术,包括遮挡剔除。该项目与 gl_occlusion_culling 项目共享相同的遮挡剔除系统,但应用于更复杂的场景和渲染需求。
通过这些生态项目,开发者可以深入了解如何在不同的场景和需求中应用遮挡剔除技术,并结合其他优化技术来提高渲染性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00