OpenGL 遮挡剔除示例项目教程
1. 项目介绍
gl_occlusion_culling 是一个基于 OpenGL 的遮挡剔除(Occlusion Culling)示例项目,由 NVIDIA 的 nvpro-samples 团队开发。该项目展示了如何使用着色器批量处理遮挡剔除,而不是依赖于单个的遮挡查询。遮挡剔除是一种优化技术,用于减少渲染的物体数量,从而提高渲染性能。该项目利用了 GL_ARB_multi_draw_indirect 扩展来实现无延迟的遮挡剔除,并展示了多种遮挡剔除算法和结果处理方法。
2. 项目快速启动
2.1 环境准备
确保你的开发环境满足以下要求:
- 支持 OpenGL 4.x 的显卡
- 安装了 CMake 和 Git
- 安装了必要的开发工具(如 Visual Studio 或 GCC)
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/nvpro-samples/gl_occlusion_culling.git
cd gl_occlusion_culling
2.3 构建项目
使用 CMake 生成构建文件并编译项目:
mkdir build
cd build
cmake ..
make
2.4 运行示例
编译完成后,运行生成的可执行文件:
./occlusion_culling
3. 应用案例和最佳实践
3.1 应用案例
遮挡剔除技术在以下场景中特别有用:
- 大规模场景渲染:在包含大量物体的场景中,遮挡剔除可以显著减少渲染的物体数量,从而提高帧率。
- 实时渲染:在需要高帧率的实时应用中,如游戏和模拟器,遮挡剔除可以减少不必要的渲染开销。
3.2 最佳实践
- 选择合适的遮挡剔除算法:根据场景的特点选择合适的遮挡剔除算法。例如,对于静态场景,可以使用基于深度缓冲区的遮挡剔除;对于动态场景,可以使用基于几何体的遮挡剔除。
- 优化遮挡剔除结果处理:使用 GPU 原子操作和间接绘制技术来处理遮挡剔除结果,避免 CPU 和 GPU 之间的同步开销。
- 结合其他优化技术:遮挡剔除可以与其他优化技术(如视锥体剔除和细节层次(LOD))结合使用,进一步提高渲染性能。
4. 典型生态项目
4.1 nvpro_core
nvpro_core 是 nvpro-samples 项目的基础库,提供了许多常用的工具和功能,如数学库、OpenGL 扩展支持、调试工具等。gl_occlusion_culling 项目依赖于 nvpro_core,因此在构建和运行该项目之前,需要确保 nvpro_core 已经正确配置。
4.2 gl_commandlist_basic
gl_commandlist_basic 是另一个 nvpro-samples 项目,展示了如何使用 NV_command_list 扩展来优化 OpenGL 渲染命令的组织和执行。NV_command_list 扩展可以与遮挡剔除技术结合使用,进一步提高渲染性能。
4.3 gl_cadscene_rendertechniques
gl_cadscene_rendertechniques 项目展示了如何在复杂的 CAD 场景中应用多种渲染技术,包括遮挡剔除。该项目与 gl_occlusion_culling 项目共享相同的遮挡剔除系统,但应用于更复杂的场景和渲染需求。
通过这些生态项目,开发者可以深入了解如何在不同的场景和需求中应用遮挡剔除技术,并结合其他优化技术来提高渲染性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00