SAM2项目在MPS设备上的视频预测问题分析与解决方案
2025-05-15 11:25:53作者:凤尚柏Louis
问题背景
在计算机视觉领域,Meta Research开源的SAM2项目是一个强大的图像分割工具。近期有用户反馈,在使用MacBook Pro M4芯片(MPS设备)运行SAM2的视频预测功能时遇到了设备不匹配的错误。具体表现为:当尝试将一个张量的存储从CPU设备设置到MPS设备时,系统报错"Attempted to set the storage of a tensor on device 'cpu' to a storage on different device 'mps:0'"。
技术分析
这个问题本质上是一个设备兼容性问题,主要涉及以下几个方面:
-
MPS设备特性:MPS(Metal Performance Shaders)是苹果为其M系列芯片开发的GPU加速框架,与传统的CUDA或CPU计算有着不同的内存管理机制。
-
PyTorch设备管理:PyTorch在处理张量时会跟踪每个张量所在的设备(CPU、CUDA或MPS),当尝试在不同设备间直接操作张量时,需要显式地进行设备转移。
-
pin_memory问题:在原始代码中使用了pin_memory()方法,这个方法主要用于CUDA设备的内存锁定优化,但在MPS设备上并不适用,反而会导致设备不匹配的错误。
解决方案
针对这个问题,开发团队提供了两种解决方案:
-
代码修改方案:
- 移除pin_memory()调用,因为MPS设备不需要这种内存优化
- 清理Python缓存(pycache)以确保修改生效
-
更新安装方案:
- 拉取最新的代码库版本
- 重新安装SAM2项目
- 新版本已经合并了对MPS设备的专门支持
实施建议
对于遇到类似问题的开发者,建议按照以下步骤操作:
- 首先尝试更新到最新版本的SAM2,这是最稳妥的解决方案
- 如果无法立即更新,可以临时修改代码,移除pin_memory()调用
- 修改后记得清理Python缓存以确保修改生效
- 在MPS设备上运行时,注意监控内存使用情况,因为MPS的内存管理与CUDA有所不同
技术启示
这个案例给我们带来几个重要的技术启示:
- 跨平台兼容性在深度学习框架中仍然是一个挑战,特别是在新兴硬件架构上
- 针对特定硬件优化的代码可能在其他硬件上产生问题
- 开源社区的快速响应和协作是解决这类问题的有效途径
- 在开发跨平台应用时,需要考虑不同硬件架构的内存管理特性
通过这个问题的解决过程,我们不仅看到了SAM2项目团队的专业响应,也了解了在MPS设备上运行深度学习模型时需要注意的关键点。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1