ModelContextProtocol Python SDK中FastMCP工具输入模式声明问题解析
2025-05-22 07:32:48作者:董灵辛Dennis
在ModelContextProtocol Python SDK的开发过程中,FastMCP工具装饰器的输入模式声明方式可能会让开发者感到困惑。本文将深入分析这一问题,并提供清晰的解决方案。
问题背景
FastMCP是ModelContextProtocol Python SDK中一个高效的组件初始化器,它允许开发者通过装饰器方式快速注册工具。然而,开发者在使用过程中发现,通过@mcp.tool
装饰器无法直接声明输入模式(input_schema),而工具类(Tool)本身确实包含inputSchema属性。
技术分析
FastMCP工具装饰器实现
FastMCP中的工具装饰器实现如下:
def tool(
self, name: str | None = None, description: str | None = None
) -> Callable[[AnyFunction], AnyFunction]:
# 装饰器逻辑
def decorator(fn: AnyFunction) -> AnyFunction:
self.add_tool(fn, name=name, description=description)
return fn
return decorator
工具类结构
工具类(Tool)的定义中包含inputSchema字段:
class Tool(BaseModel):
name: str
description: str | None = None
inputSchema: dict[str, Any] # 输入模式定义
参数与输入模式的映射关系
经过深入研究发现,FastMCP实际上采用了参数(parameters)而非直接的input_schema来定义输入模式。当开发者使用参数定义时,系统会自动将其转换为符合规范的inputSchema格式。
解决方案
正确使用方法
开发者可以通过以下方式定义工具及其输入模式:
@mcp.tool(
name="check_availability",
description="检查可用性",
parameters={
"type": "object",
"properties": {
"state": {"type": "string"},
"token": {"type": "string"},
"user": {"type": "string"},
"timeZone": {"type": "string"}
},
"required": ["state", "token", "user"]
}
)
def check_availability(state: str, token: str, user: str, timeZone: str = None) -> str:
# 工具实现逻辑
实现原理
- 参数转换:当使用parameters定义时,FastMCP会将其自动转换为标准的JSON Schema格式
- 类型推断:系统会根据函数参数的类型注解自动补充参数类型信息
- 默认值处理:可选参数(有默认值的参数)会被自动标记为非必需字段
最佳实践
- 优先使用parameters:在FastMCP中,使用parameters参数比直接定义input_schema更符合设计理念
- 结合类型注解:函数参数的类型注解可以与parameters定义配合使用,提供更完整的类型信息
- 完整模式定义:对于复杂参数结构,建议提供完整的JSON Schema定义
总结
ModelContextProtocol Python SDK的FastMCP组件通过parameters参数提供了灵活的工具输入模式定义方式。开发者无需直接操作inputSchema字段,而是可以通过更友好的parameters接口来定义工具的参数结构。这种设计既保持了与JSON Schema标准的兼容性,又提供了更简洁的API接口。
理解这一设计模式后,开发者可以更高效地利用FastMCP构建工具服务,同时确保输入参数的类型安全和结构完整性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133