ModelContextProtocol Python SDK中FastMCP工具输入模式声明问题解析
2025-05-22 09:45:56作者:董灵辛Dennis
在ModelContextProtocol Python SDK的开发过程中,FastMCP工具装饰器的输入模式声明方式可能会让开发者感到困惑。本文将深入分析这一问题,并提供清晰的解决方案。
问题背景
FastMCP是ModelContextProtocol Python SDK中一个高效的组件初始化器,它允许开发者通过装饰器方式快速注册工具。然而,开发者在使用过程中发现,通过@mcp.tool装饰器无法直接声明输入模式(input_schema),而工具类(Tool)本身确实包含inputSchema属性。
技术分析
FastMCP工具装饰器实现
FastMCP中的工具装饰器实现如下:
def tool(
self, name: str | None = None, description: str | None = None
) -> Callable[[AnyFunction], AnyFunction]:
# 装饰器逻辑
def decorator(fn: AnyFunction) -> AnyFunction:
self.add_tool(fn, name=name, description=description)
return fn
return decorator
工具类结构
工具类(Tool)的定义中包含inputSchema字段:
class Tool(BaseModel):
name: str
description: str | None = None
inputSchema: dict[str, Any] # 输入模式定义
参数与输入模式的映射关系
经过深入研究发现,FastMCP实际上采用了参数(parameters)而非直接的input_schema来定义输入模式。当开发者使用参数定义时,系统会自动将其转换为符合规范的inputSchema格式。
解决方案
正确使用方法
开发者可以通过以下方式定义工具及其输入模式:
@mcp.tool(
name="check_availability",
description="检查可用性",
parameters={
"type": "object",
"properties": {
"state": {"type": "string"},
"token": {"type": "string"},
"user": {"type": "string"},
"timeZone": {"type": "string"}
},
"required": ["state", "token", "user"]
}
)
def check_availability(state: str, token: str, user: str, timeZone: str = None) -> str:
# 工具实现逻辑
实现原理
- 参数转换:当使用parameters定义时,FastMCP会将其自动转换为标准的JSON Schema格式
- 类型推断:系统会根据函数参数的类型注解自动补充参数类型信息
- 默认值处理:可选参数(有默认值的参数)会被自动标记为非必需字段
最佳实践
- 优先使用parameters:在FastMCP中,使用parameters参数比直接定义input_schema更符合设计理念
- 结合类型注解:函数参数的类型注解可以与parameters定义配合使用,提供更完整的类型信息
- 完整模式定义:对于复杂参数结构,建议提供完整的JSON Schema定义
总结
ModelContextProtocol Python SDK的FastMCP组件通过parameters参数提供了灵活的工具输入模式定义方式。开发者无需直接操作inputSchema字段,而是可以通过更友好的parameters接口来定义工具的参数结构。这种设计既保持了与JSON Schema标准的兼容性,又提供了更简洁的API接口。
理解这一设计模式后,开发者可以更高效地利用FastMCP构建工具服务,同时确保输入参数的类型安全和结构完整性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19