深入解析ModelContextProtocol Python SDK中的prompt装饰器使用问题
在使用ModelContextProtocol(简称MCP)Python SDK开发过程中,许多开发者可能会遇到一个常见问题:尝试使用@mcp.prompt()
装饰器时,系统抛出AttributeError: module 'mcp' has no attribute 'prompt'
错误。这个问题看似简单,但实际上揭示了SDK使用中的一个重要概念。
问题本质分析
这个错误的核心原因在于对MCP SDK初始化流程的理解不足。MCP SDK采用了面向对象的设计模式,prompt
装饰器并不是直接暴露在模块级别的函数,而是需要通过实例化FastMCP
类后才能使用的方法。
正确使用方法
要正确使用MCP SDK的prompt功能,开发者需要遵循以下步骤:
- 首先导入必要的模块:
from mcp.server.fastmcp import FastMCP
- 创建FastMCP实例:
mcp = FastMCP()
- 然后才能使用prompt装饰器:
@mcp.prompt()
def my_function():
return "响应内容"
设计原理探究
MCP SDK采用这种设计方式有几个重要考虑:
-
实例化配置:每个MCP实例可能需要不同的配置参数,如服务器地址、认证信息等。通过实例化方式可以灵活配置这些参数。
-
状态管理:MCP实例可能维护着与服务器的连接状态、缓存等内部状态,模块级别的函数难以管理这种状态。
-
扩展性:面向对象的设计使得未来可以更容易地扩展功能,如添加不同类型的MCP实现。
常见误区
初学者常犯的几个错误包括:
-
直接使用模块级别的
mcp.prompt()
,而忽略了实例化步骤。 -
在多个地方重复实例化FastMCP,导致资源浪费或状态不一致。
-
将FastMCP实例放在不合适的生命周期位置,如函数内部,导致装饰器失效。
最佳实践建议
基于项目经验,我们推荐以下最佳实践:
-
集中管理实例:在应用初始化阶段创建FastMCP实例,并通过依赖注入等方式提供给需要使用的地方。
-
配置分离:将FastMCP的配置参数(如服务器URL)放在配置文件中,而不是硬编码。
-
单例模式:考虑使用单例模式管理FastMCP实例,确保整个应用中只有一个实例。
-
错误处理:在使用prompt装饰器时,添加适当的错误处理逻辑,处理可能的网络或服务器错误。
深入理解prompt装饰器
MCP SDK中的prompt装饰器实际上是一个强大的工具,它能够:
- 自动将函数注册到MCP服务器
- 处理输入输出的序列化和反序列化
- 提供统一的错误处理机制
- 支持异步调用模式
理解这些底层机制有助于开发者更好地利用MCP SDK构建复杂的AI应用集成。
总结
通过本文的分析,我们不仅解决了最初的AttributeError问题,更深入理解了MCP Python SDK的设计哲学和使用模式。记住,在使用任何SDK时,仔细阅读官方文档,理解其架构设计,是避免常见错误的关键。MCP SDK通过其实例化的设计模式,提供了灵活而强大的功能扩展能力,值得开发者深入学习和掌握。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









