深入解析ModelContextProtocol Python SDK中的prompt装饰器使用问题
在使用ModelContextProtocol(简称MCP)Python SDK开发过程中,许多开发者可能会遇到一个常见问题:尝试使用@mcp.prompt()装饰器时,系统抛出AttributeError: module 'mcp' has no attribute 'prompt'错误。这个问题看似简单,但实际上揭示了SDK使用中的一个重要概念。
问题本质分析
这个错误的核心原因在于对MCP SDK初始化流程的理解不足。MCP SDK采用了面向对象的设计模式,prompt装饰器并不是直接暴露在模块级别的函数,而是需要通过实例化FastMCP类后才能使用的方法。
正确使用方法
要正确使用MCP SDK的prompt功能,开发者需要遵循以下步骤:
- 首先导入必要的模块:
from mcp.server.fastmcp import FastMCP
- 创建FastMCP实例:
mcp = FastMCP()
- 然后才能使用prompt装饰器:
@mcp.prompt()
def my_function():
return "响应内容"
设计原理探究
MCP SDK采用这种设计方式有几个重要考虑:
-
实例化配置:每个MCP实例可能需要不同的配置参数,如服务器地址、认证信息等。通过实例化方式可以灵活配置这些参数。
-
状态管理:MCP实例可能维护着与服务器的连接状态、缓存等内部状态,模块级别的函数难以管理这种状态。
-
扩展性:面向对象的设计使得未来可以更容易地扩展功能,如添加不同类型的MCP实现。
常见误区
初学者常犯的几个错误包括:
-
直接使用模块级别的
mcp.prompt(),而忽略了实例化步骤。 -
在多个地方重复实例化FastMCP,导致资源浪费或状态不一致。
-
将FastMCP实例放在不合适的生命周期位置,如函数内部,导致装饰器失效。
最佳实践建议
基于项目经验,我们推荐以下最佳实践:
-
集中管理实例:在应用初始化阶段创建FastMCP实例,并通过依赖注入等方式提供给需要使用的地方。
-
配置分离:将FastMCP的配置参数(如服务器URL)放在配置文件中,而不是硬编码。
-
单例模式:考虑使用单例模式管理FastMCP实例,确保整个应用中只有一个实例。
-
错误处理:在使用prompt装饰器时,添加适当的错误处理逻辑,处理可能的网络或服务器错误。
深入理解prompt装饰器
MCP SDK中的prompt装饰器实际上是一个强大的工具,它能够:
- 自动将函数注册到MCP服务器
- 处理输入输出的序列化和反序列化
- 提供统一的错误处理机制
- 支持异步调用模式
理解这些底层机制有助于开发者更好地利用MCP SDK构建复杂的AI应用集成。
总结
通过本文的分析,我们不仅解决了最初的AttributeError问题,更深入理解了MCP Python SDK的设计哲学和使用模式。记住,在使用任何SDK时,仔细阅读官方文档,理解其架构设计,是避免常见错误的关键。MCP SDK通过其实例化的设计模式,提供了灵活而强大的功能扩展能力,值得开发者深入学习和掌握。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00