Data-Juicer项目中图片数据处理与InternVL2模型适配问题解析
2025-06-14 04:17:24作者:裴麒琰
背景介绍
Data-Juicer是一个强大的数据处理工具,特别擅长处理多模态数据。在实际应用中,用户经常需要处理包含图片的数据集,并为这些图片生成相应的文字描述。本文将以一个典型场景为例,探讨如何正确准备图片数据格式,以及在使用InternVL2这类视觉语言模型时可能遇到的问题。
图片数据格式准备
在Data-Juicer中处理图片数据时,需要遵循特定的数据格式规范。对于仅包含图片而没有文字描述的数据集,每条样本应包含以下字段:
text字段:使用特殊token<__dj__image>作为占位符images字段:包含图片路径的列表
示例数据格式如下:
{
"text": "<__dj__image>",
"images": ["/path/to/image1.jpg"]
}
可以通过简单的Python脚本批量生成这种格式的数据集文件:
import os
import jsonlines
from data_juicer.utils.mm_utils import SpecialTokens
image_dir = '存放图片的目录'
dataset_file = 'dataset.jsonl'
with jsonlines.open(dataset_file, 'w') as writer:
for filename in os.listdir(image_dir):
writer.write({
'text': SpecialTokens.image,
'images': [os.path.join(image_dir, filename)],
})
使用image_captioning_mapper算子的注意事项
Data-Juicer提供了image_captioning_mapper算子用于为图片生成文字描述,但需要注意以下几点:
-
模型适配性:该算子默认支持BLIP-2等特定类型的模型,对于InternVL2这类视觉语言模型(VLM)可能不完全兼容
-
常见错误:
- "You need to specify either
textortext_target"错误通常表明模型接口不匹配 - 处理失败后可能没有输出结果,这是因为缓存机制导致的
- "You need to specify either
-
解决方案:
- 测试时可设置
use_cache: false关闭缓存 - 对于InternVL2这类模型,建议基于算子实现和模型文档开发专用算子
- 测试时可设置
技术深度解析
InternVL2这类视觉语言模型与传统的图片描述生成模型在以下方面存在差异:
- Tokenizer处理:VLM通常有自己特殊的tokenization方式
- 生成接口:generate或chat接口的参数和返回值格式可能不同
- 多模态理解:VLM对图片和文本的联合理解方式更为复杂
在实际应用中,开发者需要根据具体模型的特点调整数据处理流程,确保模型能够正确接收输入并产生预期的输出格式。
最佳实践建议
-
对于新模型适配:
- 先单独测试模型的基本功能
- 再将其集成到Data-Juicer的处理流程中
- 必要时开发专用算子
-
数据处理流程:
- 始终保持数据格式规范
- 处理前做好数据验证
- 处理过程中监控资源使用情况
-
性能优化:
- 小规模测试时关闭缓存
- 大规模处理时合理利用缓存机制
- 根据硬件条件调整并行处理参数
通过遵循这些原则,可以更高效地利用Data-Juicer处理多模态数据,特别是包含图片的数据集。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140