UVADLC Notebooks教程解析:图神经网络中的图卷积与实现细节
2025-06-28 10:28:38作者:范靓好Udolf
在深度学习领域,图神经网络(GNN)因其处理非欧几里得数据的强大能力而备受关注。本文基于UVADLC Notebooks项目中的教程7,深入探讨图卷积网络(GCN)的实现原理和关键细节。
图卷积的两种归一化方式
图卷积网络的核心操作是对节点特征进行邻域聚合。教程中提到的两种归一化方式:
- 对称归一化:H^(l+1) = σ(D̂^{-1/2}ÂD̂^{-1/2}HW)
- 简单归一化:H^(l+1) = σ(D̂^{-1}ÂHW)
其中D̂表示度矩阵,Â是邻接矩阵加上自连接后的矩阵。虽然数学表达式不同,但在实际应用中,当图结构相对简单时,两种归一化方式可以达到相似的效果。教程实现采用了后者,计算上更为简便。
JAX实现中的技术细节
在JAX实现部分,教程展示了如何构建图注意力网络。其中关键的注意力系数计算部分需要注意张量维度的匹配:
# 原始实现(存在维度不匹配问题)
logit_parent = (node_feats * self.a[None,None,:,:self.a.shape[0]//2]).sum(axis=-1)
logit_child = (node_feats * self.a[None,None,:,self.a.shape[0]//2:]).sum(axis=-1)
# 修正后的实现
logit_parent = (node_feats * self.a[None,None,:,:self.a.shape[1]//2]).sum(axis=-1)
logit_child = (node_feats * self.a[None,None,:,self.a.shape[1]//2:]).sum(axis=-1)
这个修正确保了注意力权重矩阵的维度正确分割,使得父节点和子节点的特征能够被正确处理。虽然在本例中由于权重矩阵尺寸较小(2×2)而未引发错误,但在更一般的情况下,正确的维度指定对模型性能至关重要。
图神经网络的实际应用考量
在实际工程实现中,图神经网络有几个关键点需要考虑:
- 稀疏矩阵处理:大规模图的邻接矩阵通常是稀疏的,需要专门的稀疏矩阵运算优化
- 批量处理:不同图的节点数和边数可能不同,需要设计合理的批处理策略
- 归一化选择:根据图结构特点选择合适的归一化方式,平衡计算复杂度和模型性能
UVADLC Notebooks的教程为理解这些概念提供了很好的实践基础,通过JAX的实现展示了图神经网络的核心思想。理解这些底层细节有助于开发者根据具体应用场景调整模型架构,获得更好的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319