UVADLC Notebooks项目中的变分去量化与对数雅可比行列式计算解析
在UVADLC Notebooks项目的第11个教程中,涉及了变分去量化(Variational Dequantization)和对数雅可比行列式(log Jacobian determinant)的计算方法。本文将深入解析这些关键技术的数学原理和实现细节。
去量化与变分去量化的基本原理
去量化是将离散的像素值转换为连续分布的过程。在8位图像处理中,像素值通常是0-255的整数。去量化通过添加均匀噪声并缩放,将这些离散值转换为连续空间中的均匀分布。
变分去量化则更进一步,它通过学习一个条件分布来建模去量化过程,而不是简单地使用均匀分布。这使得模型能够更好地适应数据的真实分布。
对数雅可比行列式的计算
在归一化流模型中,保持变换的可逆性至关重要。对数雅可比行列式记录了变量变换过程中概率密度的变化,是模型训练中的关键组成部分。
Sigmoid变换的雅可比行列式
sigmoid函数的导数为: σ'(z) = σ(z)(1-σ(z))
其对数形式为: log σ'(z) = log σ(z) + log (1-σ(z))
通过展开可以得到: log σ(z) = -log(1+exp(-z)) log (1-σ(z)) = -z - log(1+exp(-z))
合并后得到: log σ'(z) = -z - 2·log(1+exp(-z)) = -z - 2·softplus(-z)
这正是代码中实现的形式,其中softplus函数由PyTorch的F.softplus提供数值稳定的计算。
缩放操作的雅可比行列式
在去量化过程中,图像数据会进行缩放操作: z = z / quants
这是一个线性变换,其雅可比行列式为: log |J| = -log(quants)
由于这个变换应用于图像的所有像素点(不包括batch维度),需要对所有空间位置求和,等价于乘以像素总数np.prod(z.shape[1:])。
数值稳定性的处理
为了避免在sigmoid变换时遇到边界值问题,代码实现了以下处理: z = z * (1 - alpha) + 0.5 * alpha
这是一个仿射变换,其雅可比行列式仅由缩放因子决定: log |J| = log(1 - alpha)
加性常数0.5 * alpha不影响导数计算,因此不出现在雅可比行列式中。
实现细节与注意事项
-
在反向变换时,需要将连续值重新量化为离散值,同时保持概率密度的正确转换。
-
所有变换都需要保持可逆性,并且要准确计算每一步的对数雅可比行列式。
-
数值稳定性处理是实际实现中的关键,特别是在处理接近0和1的边界值时。
-
对于图像数据,需要考虑空间维度的影响,正确计算所有像素点的累积变化。
理解这些数学原理对于实现和调试归一化流模型至关重要,特别是在处理图像数据时。通过精确计算每一步的变换和对数雅可比行列式,模型能够学习到数据空间的复杂分布,同时保持概率密度的正确转换。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









