Panda 开源项目教程
1. 项目介绍
Panda 是一个由 comma.ai 开发的开源项目,旨在为汽车提供一个通用的接口,使得开发者能够轻松地与车辆的电子控制单元(ECU)进行通信。Panda 项目提供了一个硬件设备和相应的软件库,使得开发者可以在不同的汽车上实现各种功能,如数据记录、车辆诊断和自动驾驶辅助系统等。
Panda 的核心是一个硬件设备,它通过 OBD-II 接口与车辆连接,并通过 USB 或 Wi-Fi 与用户的计算机或移动设备通信。Panda 设备支持多种协议,包括 CAN、LIN 和 K-Line,使得它能够与大多数现代汽车兼容。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你的开发环境已经安装了以下工具:
- Python 3.x
- Git
- pip
2.2 克隆项目
首先,克隆 Panda 项目的代码库到本地:
git clone https://github.com/commaai/panda.git
cd panda
2.3 安装依赖
进入项目目录后,安装所需的 Python 依赖:
pip install -r requirements.txt
2.4 编译固件
Panda 设备需要特定的固件才能正常工作。你可以使用以下命令编译并上传固件到 Panda 设备:
cd board
make
make upload
2.5 运行示例代码
Panda 项目提供了一些示例代码,帮助你快速上手。以下是一个简单的示例,用于读取车辆的 CAN 总线数据:
from panda import Panda
# 初始化 Panda 设备
panda = Panda()
# 连接到车辆
panda.connect()
# 读取 CAN 数据
while True:
can_data = panda.can_recv()
for msg in can_data:
print(f"CAN ID: {msg[0]}, Data: {msg[2]}")
3. 应用案例和最佳实践
3.1 数据记录
Panda 可以用于记录车辆的实时数据,这对于车辆诊断和性能分析非常有用。你可以使用 Panda 读取 CAN 总线上的数据,并将其存储到文件中。
3.2 自动驾驶辅助
Panda 可以与自动驾驶软件结合使用,提供车辆状态的实时反馈。例如,你可以使用 Panda 读取车辆的转向角度、车速等信息,并将其传递给自动驾驶算法。
3.3 车辆诊断
Panda 可以用于读取车辆的故障码,并提供详细的诊断信息。这对于车辆维修和保养非常有帮助。
4. 典型生态项目
4.1 openpilot
openpilot 是一个开源的自动驾驶辅助系统,由 comma.ai 开发。它使用 Panda 设备与车辆通信,并提供车道保持、自适应巡航控制等功能。
4.2 Cabana
Cabana 是一个用于可视化和分析 CAN 数据的工具。它与 Panda 设备配合使用,可以帮助开发者更好地理解车辆的通信协议。
4.3 Chffr
Chffr 是一个行车记录仪应用,使用 Panda 设备记录车辆的行驶数据。它可以将数据上传到云端,并提供详细的行车报告。
通过以上教程,你应该能够快速上手 Panda 项目,并开始开发自己的应用。如果你有任何问题,可以参考项目的 GitHub 页面或社区论坛,获取更多帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00