Visual Studio Code扩展:neuron 使用教程
2024-08-19 23:25:46作者:董宙帆
项目介绍
neuron 是一个为数据科学家设计的交互式编程体验的 Visual Studio Code 扩展。它旨在通过结合 Visual Studio Code 的强大功能,提供一个无缝的编程环境,使用户能够更高效地进行数据科学工作。
项目快速启动
安装
- 打开 Visual Studio Code。
- 进入扩展市场,搜索 "neuron"。
- 点击安装。
配置
- 安装完成后,打开设置界面。
- 搜索 "neuron" 进行相关配置。
使用
以下是一个简单的代码示例,展示如何在 Visual Studio Code 中使用 neuron 扩展:
# 导入必要的库
import numpy as np
import pandas as pd
# 创建一个简单的数据集
data = {
'A': np.random.rand(10),
'B': np.random.rand(10),
'C': np.random.rand(10)
}
df = pd.DataFrame(data)
print(df)
应用案例和最佳实践
数据分析
neuron 扩展可以帮助数据科学家在 Visual Studio Code 中进行数据分析。以下是一个简单的数据分析案例:
# 读取数据
df = pd.read_csv('data.csv')
# 数据预处理
df.dropna(inplace=True)
# 数据分析
mean_values = df.mean()
print(mean_values)
机器学习
neuron 扩展也支持机器学习任务。以下是一个简单的机器学习案例:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 读取数据
df = pd.read_csv('data.csv')
# 数据预处理
X = df[['A', 'B']]
y = df['C']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
print(predictions)
典型生态项目
Ipe Tools
Ipe Tools 是一个用于将 Ipe 可扩展绘图编辑器集成到 Visual Studio Code 的小型扩展。它提供了三个命令:
ipe-tools insertFigure:插入一个代码片段并启动 Ipe 编辑新图形。ipe-tools newFigure:使用默认保存对话框创建一个新图形。ipe-tools editFigure:直接从 Visual Studio Code 启动 Ipe 编辑图形。
vscode-ipe
vscode-ipe 是 neuron 项目的一部分,它提供了一个交互式编程体验,特别适合数据科学家。它包括多个模块,如后端、前端和测试模块,以确保扩展的稳定性和功能性。
通过这些生态项目,neuron 扩展能够提供一个完整的数据科学工作流,从数据分析到机器学习,再到可视化,一应俱全。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692