Visual Studio Code扩展:neuron 使用教程
2024-08-19 06:02:03作者:董宙帆
项目介绍
neuron 是一个为数据科学家设计的交互式编程体验的 Visual Studio Code 扩展。它旨在通过结合 Visual Studio Code 的强大功能,提供一个无缝的编程环境,使用户能够更高效地进行数据科学工作。
项目快速启动
安装
- 打开 Visual Studio Code。
- 进入扩展市场,搜索 "neuron"。
- 点击安装。
配置
- 安装完成后,打开设置界面。
- 搜索 "neuron" 进行相关配置。
使用
以下是一个简单的代码示例,展示如何在 Visual Studio Code 中使用 neuron 扩展:
# 导入必要的库
import numpy as np
import pandas as pd
# 创建一个简单的数据集
data = {
'A': np.random.rand(10),
'B': np.random.rand(10),
'C': np.random.rand(10)
}
df = pd.DataFrame(data)
print(df)
应用案例和最佳实践
数据分析
neuron 扩展可以帮助数据科学家在 Visual Studio Code 中进行数据分析。以下是一个简单的数据分析案例:
# 读取数据
df = pd.read_csv('data.csv')
# 数据预处理
df.dropna(inplace=True)
# 数据分析
mean_values = df.mean()
print(mean_values)
机器学习
neuron 扩展也支持机器学习任务。以下是一个简单的机器学习案例:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 读取数据
df = pd.read_csv('data.csv')
# 数据预处理
X = df[['A', 'B']]
y = df['C']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
print(predictions)
典型生态项目
Ipe Tools
Ipe Tools 是一个用于将 Ipe 可扩展绘图编辑器集成到 Visual Studio Code 的小型扩展。它提供了三个命令:
ipe-tools insertFigure
:插入一个代码片段并启动 Ipe 编辑新图形。ipe-tools newFigure
:使用默认保存对话框创建一个新图形。ipe-tools editFigure
:直接从 Visual Studio Code 启动 Ipe 编辑图形。
vscode-ipe
vscode-ipe 是 neuron 项目的一部分,它提供了一个交互式编程体验,特别适合数据科学家。它包括多个模块,如后端、前端和测试模块,以确保扩展的稳定性和功能性。
通过这些生态项目,neuron 扩展能够提供一个完整的数据科学工作流,从数据分析到机器学习,再到可视化,一应俱全。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8