Awesome-Scientific-Language-Models 使用教程
2024-08-25 12:43:43作者:冯爽妲Honey
项目介绍
Awesome-Scientific-Language-Models 是一个汇集了多种科学领域语言模型的开源项目。该项目旨在为研究人员和开发者提供一个全面的资源库,以便更好地理解和应用科学领域的语言模型。项目包含了多个子模块,每个子模块都针对特定的科学领域或应用场景进行了优化。
项目快速启动
环境准备
在开始使用项目之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
克隆项目
首先,克隆项目到本地:
git clone https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models.git
cd Awesome-Scientific-Language-Models
安装依赖
安装项目所需的Python依赖包:
pip install -r requirements.txt
运行示例
项目中包含了一些示例代码,可以帮助您快速了解如何使用这些科学语言模型。以下是一个简单的示例代码:
from models import SciBERT
# 加载预训练模型
model = SciBERT.from_pretrained('scibert-scivocab-uncased')
# 示例文本
text = "Machine learning is a subset of artificial intelligence."
# 使用模型进行预测
outputs = model(text)
print(outputs)
应用案例和最佳实践
案例一:科学文献摘要生成
使用 SciBERT 模型进行科学文献的摘要生成是一个典型的应用场景。以下是一个简单的代码示例:
from transformers import pipeline
# 创建摘要生成器
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# 示例科学文献
document = """
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn',
that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of
artificial intelligence. Machine learning algorithms build a model based on sample data, known as
'training data', in order to make predictions or decisions without being explicitly programmed to
perform the task.
"""
# 生成摘要
summary = summarizer(document, max_length=50, min_length=30, do_sample=False)
print(summary)
案例二:科学文献相似度计算
使用 SciNCL 模型进行科学文献的相似度计算是另一个常见的应用场景。以下是一个简单的代码示例:
from models import SciNCL
# 加载预训练模型
model = SciNCL.from_pretrained('scincl-base')
# 示例文献
doc1 = "Machine learning is a subset of artificial intelligence."
doc2 = "Deep learning is a subset of machine learning."
# 计算相似度
similarity = model.similarity(doc1, doc2)
print(similarity)
典型生态项目
项目一:ClimaX
ClimaX 是一个用于天气和气候预测的基础模型。它利用3D神经网络进行高精度的天气和气候预测。
项目二:FengWu
FengWu 是一个用于全球中期天气预报的模型,能够将天气预报的准确性提升到10天以上。
项目三:W-MAE
W-MAE 是一个使用掩码自编码器进行多变量天气预报的预训练模型。
项目四:FuXi
FuXi 是一个用于15天全球天气预报的级联机器学习预测系统。
通过这些生态项目,您可以更深入地了解和应用科学领域的语言模型,从而在您的研究或开发工作中取得更好的成果。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8