Awesome-Scientific-Language-Models 使用教程
2024-08-25 10:11:35作者:冯爽妲Honey
项目介绍
Awesome-Scientific-Language-Models 是一个汇集了多种科学领域语言模型的开源项目。该项目旨在为研究人员和开发者提供一个全面的资源库,以便更好地理解和应用科学领域的语言模型。项目包含了多个子模块,每个子模块都针对特定的科学领域或应用场景进行了优化。
项目快速启动
环境准备
在开始使用项目之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
克隆项目
首先,克隆项目到本地:
git clone https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models.git
cd Awesome-Scientific-Language-Models
安装依赖
安装项目所需的Python依赖包:
pip install -r requirements.txt
运行示例
项目中包含了一些示例代码,可以帮助您快速了解如何使用这些科学语言模型。以下是一个简单的示例代码:
from models import SciBERT
# 加载预训练模型
model = SciBERT.from_pretrained('scibert-scivocab-uncased')
# 示例文本
text = "Machine learning is a subset of artificial intelligence."
# 使用模型进行预测
outputs = model(text)
print(outputs)
应用案例和最佳实践
案例一:科学文献摘要生成
使用 SciBERT 模型进行科学文献的摘要生成是一个典型的应用场景。以下是一个简单的代码示例:
from transformers import pipeline
# 创建摘要生成器
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# 示例科学文献
document = """
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn',
that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of
artificial intelligence. Machine learning algorithms build a model based on sample data, known as
'training data', in order to make predictions or decisions without being explicitly programmed to
perform the task.
"""
# 生成摘要
summary = summarizer(document, max_length=50, min_length=30, do_sample=False)
print(summary)
案例二:科学文献相似度计算
使用 SciNCL 模型进行科学文献的相似度计算是另一个常见的应用场景。以下是一个简单的代码示例:
from models import SciNCL
# 加载预训练模型
model = SciNCL.from_pretrained('scincl-base')
# 示例文献
doc1 = "Machine learning is a subset of artificial intelligence."
doc2 = "Deep learning is a subset of machine learning."
# 计算相似度
similarity = model.similarity(doc1, doc2)
print(similarity)
典型生态项目
项目一:ClimaX
ClimaX 是一个用于天气和气候预测的基础模型。它利用3D神经网络进行高精度的天气和气候预测。
项目二:FengWu
FengWu 是一个用于全球中期天气预报的模型,能够将天气预报的准确性提升到10天以上。
项目三:W-MAE
W-MAE 是一个使用掩码自编码器进行多变量天气预报的预训练模型。
项目四:FuXi
FuXi 是一个用于15天全球天气预报的级联机器学习预测系统。
通过这些生态项目,您可以更深入地了解和应用科学领域的语言模型,从而在您的研究或开发工作中取得更好的成果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20