解决HuggingFace Text-Embeddings-Inference在AWS SageMaker Serverless端点部署失败问题
问题背景
在使用HuggingFace的Text-Embeddings-Inference(TEI)项目时,许多开发者选择将其部署在AWS SageMaker Serverless端点上。然而,近期有用户反馈在部署过程中遇到了权限问题,导致模型无法正常下载和运行。
错误现象
当尝试使用AWS预构建的tei-cpu:2.0.1-tei1.7.0-cpu-py310-ubuntu22.04镜像部署到SageMaker Serverless端点时,系统会抛出I/O权限错误。具体表现为:
- 模型文件下载失败,错误提示"Permission denied (os error 13)"
- 无法创建必要的配置文件,如
1_Pooling/config.json和config_sentence_transformers.json - 最终导致模型部署失败,错误信息为"Could not download model artifacts"
问题根源
经过技术团队分析,该问题源于SageMaker Serverless环境的特殊权限设置。与基于实例的端点不同,Serverless端点对容器内文件系统的写入权限有更严格的限制。默认情况下,TEI容器尝试将模型缓存到/data目录,但在Serverless环境中该目录可能不具备写入权限。
解决方案
要解决此问题,需要显式指定一个具有写入权限的缓存目录。AWS SageMaker为模型提供了一个标准的可写目录/opt/ml/model。我们可以通过设置环境变量HUGGINGFACE_HUB_CACHE来重定向HuggingFace的缓存位置。
具体实现方法如下:
from sagemaker.huggingface import HuggingFaceModel
model = HuggingFaceModel(
role=role,
image_uri=get_huggingface_llm_image_uri("huggingface-tei-cpu"),
env={
"HF_MODEL_ID": "您的模型ID",
"HUGGINGFACE_HUB_CACHE": "/opt/ml/model", # 关键配置
},
)
技术原理
-
权限模型差异:SageMaker Serverless端点使用不同于传统实例的安全模型,限制了容器对文件系统的访问权限。
-
缓存机制:HuggingFace库默认会缓存下载的模型文件,但在Serverless环境中需要明确指定可写位置。
-
SageMaker标准目录:
/opt/ml/model是SageMaker专门为模型数据预留的可写目录,适合存放模型缓存。
最佳实践
-
对于所有SageMaker Serverless部署,建议始终设置
HUGGINGFACE_HUB_CACHE环境变量。 -
考虑内存配置:Serverless端点需要足够的内存来处理模型下载和推理,建议至少配置6144MB内存。
-
监控部署过程:通过CloudWatch日志实时观察部署进度,及时发现潜在问题。
总结
通过正确配置HuggingFace模型缓存目录,开发者可以顺利地在AWS SageMaker Serverless端点上部署Text-Embeddings-Inference服务。这一解决方案不仅解决了权限问题,也为其他类似场景下的模型部署提供了参考。随着Serverless计算在AI领域的广泛应用,理解这些环境差异和配置技巧将变得越来越重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00