AIMET 2.1.0版本发布:深度学习模型量化工具的重大更新
AIMET(AI Model Efficiency Toolkit)是由高通开源的一款专注于提升深度学习模型效率的工具包,主要应用于模型量化和压缩领域。该工具支持PyTorch、TensorFlow和ONNX等多种主流深度学习框架,能够帮助开发者在不显著损失模型精度的情况下,大幅减少模型的计算量和内存占用。
近日,AIMET发布了2.1.0版本,带来了一系列重要的新特性和改进。本文将详细介绍这次更新的主要内容及其技术意义。
核心新特性解析
默认量化策略的重大变更
在2.1.0版本中,AIMET QuantSim工具默认采用了**逐通道(per-channel)**的权重量化方式,取代了之前的逐张量(per-tensor)量化。这一变更虽然可能影响向后兼容性,但从技术角度来看具有显著优势:
-
精度提升:逐通道量化能够为每个卷积核或全连接层的每个输出通道单独计算量化参数,相比整个张量使用相同的量化参数,可以更好地保留模型精度。
-
硬件友好:现代AI处理器(如高通Hexagon处理器)通常对逐通道量化有更好的支持,这种变更使AIMET生成的量化模型能够更高效地在这些硬件上运行。
同时,AIMET QuantSim现在默认导出符合1.0.0版本的编码JSON模式,这为量化参数的标准化表示奠定了基础。
PyTorch量化增强
2.1.0版本对PyTorch的支持做了重要增强:
-
标量输入量化:现在AIMET能够量化类型为
torch.nn.Parameter的标量输入。在之前的版本中,这类输入会被忽略,可能导致量化模型与原始模型在某些场景下行为不一致。 -
LoRA QAT支持:AIMET 2.1.0引入了使用LoRA(Low-Rank Adaptation)适配器进行量化感知训练(QAT)的完整方案。这包括:
- 仅权重量化(WQ)的LoRA QAT
- 权重和激活都量化(QWA)的LoRA QAT
LoRA技术通过在原始权重上添加低秩适配器来微调模型,特别适合在量化场景中恢复模型精度,同时保持模型结构的基本不变。
重要问题修复
针对PyTorch用户,2.1.0版本修复了一个与Adaround(一种先进的舍入方法)相关的重要问题:
在PyTorch 2.6及更高版本中,Adaround无法正确缓存数据样本的问题已得到解决。这一修复确保了在较新PyTorch版本上使用Adaround进行量化时,能够获得与之前版本一致的优化效果。
技术应用建议
对于考虑升级到AIMET 2.1.0的用户,建议注意以下几点:
-
量化策略变更的影响评估:由于默认量化策略变为逐通道方式,建议在升级后重新评估量化模型的精度和性能,特别是如果之前的工作流程依赖于逐张量量化的特定行为。
-
LoRA QAT的应用场景:对于需要高精度保持的量化任务,可以尝试新提供的LoRA QAT方案。这种方法特别适合:
- 大型语言模型的量化
- 需要最小化量化误差的关键应用场景
- 资源受限但需要保持高精度的部署环境
-
标量量化的一致性检查:如果模型中包含
torch.nn.Parameter类型的标量输入,升级后应验证这些输入的量化行为是否符合预期。
总结
AIMET 2.1.0通过引入逐通道量化默认策略、增强PyTorch支持特别是LoRA QAT方案,以及修复关键问题,进一步巩固了其作为专业模型量化工具的地位。这些改进不仅提升了量化模型的质量,也为开发者提供了更多灵活的选择来平衡模型效率和精度。
对于深度学习工程师和研究者来说,及时了解这些变化并相应调整量化工作流程,将有助于开发出更高效、更精确的量化模型,满足日益增长的边缘计算和移动端部署需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00