AIMET 2.1.0版本发布:深度学习模型量化工具的重大更新
AIMET(AI Model Efficiency Toolkit)是由高通开源的一款专注于提升深度学习模型效率的工具包,主要应用于模型量化和压缩领域。该工具支持PyTorch、TensorFlow和ONNX等多种主流深度学习框架,能够帮助开发者在不显著损失模型精度的情况下,大幅减少模型的计算量和内存占用。
近日,AIMET发布了2.1.0版本,带来了一系列重要的新特性和改进。本文将详细介绍这次更新的主要内容及其技术意义。
核心新特性解析
默认量化策略的重大变更
在2.1.0版本中,AIMET QuantSim工具默认采用了**逐通道(per-channel)**的权重量化方式,取代了之前的逐张量(per-tensor)量化。这一变更虽然可能影响向后兼容性,但从技术角度来看具有显著优势:
- 
精度提升:逐通道量化能够为每个卷积核或全连接层的每个输出通道单独计算量化参数,相比整个张量使用相同的量化参数,可以更好地保留模型精度。 
- 
硬件友好:现代AI处理器(如高通Hexagon处理器)通常对逐通道量化有更好的支持,这种变更使AIMET生成的量化模型能够更高效地在这些硬件上运行。 
同时,AIMET QuantSim现在默认导出符合1.0.0版本的编码JSON模式,这为量化参数的标准化表示奠定了基础。
PyTorch量化增强
2.1.0版本对PyTorch的支持做了重要增强:
- 
标量输入量化:现在AIMET能够量化类型为 torch.nn.Parameter的标量输入。在之前的版本中,这类输入会被忽略,可能导致量化模型与原始模型在某些场景下行为不一致。
- 
LoRA QAT支持:AIMET 2.1.0引入了使用LoRA(Low-Rank Adaptation)适配器进行量化感知训练(QAT)的完整方案。这包括: - 仅权重量化(WQ)的LoRA QAT
- 权重和激活都量化(QWA)的LoRA QAT
 
LoRA技术通过在原始权重上添加低秩适配器来微调模型,特别适合在量化场景中恢复模型精度,同时保持模型结构的基本不变。
重要问题修复
针对PyTorch用户,2.1.0版本修复了一个与Adaround(一种先进的舍入方法)相关的重要问题:
在PyTorch 2.6及更高版本中,Adaround无法正确缓存数据样本的问题已得到解决。这一修复确保了在较新PyTorch版本上使用Adaround进行量化时,能够获得与之前版本一致的优化效果。
技术应用建议
对于考虑升级到AIMET 2.1.0的用户,建议注意以下几点:
- 
量化策略变更的影响评估:由于默认量化策略变为逐通道方式,建议在升级后重新评估量化模型的精度和性能,特别是如果之前的工作流程依赖于逐张量量化的特定行为。 
- 
LoRA QAT的应用场景:对于需要高精度保持的量化任务,可以尝试新提供的LoRA QAT方案。这种方法特别适合: - 大型语言模型的量化
- 需要最小化量化误差的关键应用场景
- 资源受限但需要保持高精度的部署环境
 
- 
标量量化的一致性检查:如果模型中包含 torch.nn.Parameter类型的标量输入,升级后应验证这些输入的量化行为是否符合预期。
总结
AIMET 2.1.0通过引入逐通道量化默认策略、增强PyTorch支持特别是LoRA QAT方案,以及修复关键问题,进一步巩固了其作为专业模型量化工具的地位。这些改进不仅提升了量化模型的质量,也为开发者提供了更多灵活的选择来平衡模型效率和精度。
对于深度学习工程师和研究者来说,及时了解这些变化并相应调整量化工作流程,将有助于开发出更高效、更精确的量化模型,满足日益增长的边缘计算和移动端部署需求。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel flutter_flutter
flutter_flutter ops-math
ops-math pytorch
pytorch cangjie_tools
cangjie_tools ohos_react_native
ohos_react_native RuoYi-Vue3
RuoYi-Vue3 cangjie_compiler
cangjie_compiler Cangjie-Examples
Cangjie-Examples