Agency-Swarm项目中自定义工具JSON序列化问题的分析与解决
背景介绍
在Agency-Swarm项目开发过程中,开发者经常需要创建自定义工具类来实现特定功能。这些工具类继承自BaseTool基类,并通过OpenAI的API与智能助手进行交互。然而,近期有开发者反馈在实现自定义工具时遇到了JSON序列化错误,导致无法正常更新OpenAI助手配置。
问题现象
开发者创建的自定义工具类虽然能够正确生成工具模式(schema),但在调用_update_assistant()方法时却抛出"Object of type method is not JSON serializable"异常。从调试信息来看,工具模式本身可以正常序列化为JSON字符串,但在传递给OpenAI API时却出现了问题。
问题根源分析
经过深入分析,发现问题的根本原因在于开发者对工具模式生成机制的理解存在偏差。具体表现为:
-
不必要的模式覆写:开发者重写了
model_json_schema方法,手动构造了完整的OpenAI函数调用模式,但实际上BaseTool基类已经提供了完善的模式生成机制。 -
模式结构冲突:手动构造的模式与BaseTool自动生成的模式存在结构上的重复,这可能导致OpenAI API无法正确解析。
-
序列化时机问题:在模式传递过程中,方法对象被直接传递而非其返回值,导致JSON序列化失败。
解决方案
针对这一问题,我们推荐以下最佳实践:
1. 简化工具类实现
对于大多数场景,直接使用BaseTool提供的默认模式生成机制即可满足需求。工具类只需定义必要的字段和运行逻辑:
from agency_swarm.tools import BaseTool
from pydantic import Field
class ClickElement(BaseTool):
"""点击网页上的元素"""
selector: str = Field(
description="要点击元素的CSS选择器"
)
async def run(self):
return f"已点击选择器为 {self.selector} 的元素"
2. 特殊场景下的模式定制
如确有特殊需求需要定制模式,应使用openai_schema类属性而非覆写model_json_schema方法:
from agency_swarm.tools import BaseTool
from agency_swarm.tools.BaseTool import classproperty
class CustomTool(BaseTool):
@classproperty
def openai_schema(cls):
return {
"name": "custom_tool",
"description": "自定义工具描述",
"parameters": {
# 自定义参数定义
}
}
技术原理深入
Agency-Swarm的工具系统基于以下技术栈协同工作:
- Pydantic模型:用于定义工具的参数结构和验证规则
- OpenAI函数调用规范:将工具转换为API可识别的函数定义
- 自动化序列化:内部处理工具模式到JSON的转换过程
开发者应避免手动干预这一自动化流程,除非有明确的定制需求。BaseTool基类已经处理了以下关键细节:
- 自动从字段定义生成参数模式
- 确保模式符合OpenAI API规范
- 正确处理必需/可选参数
- 自动生成工具描述
总结与建议
通过本次问题分析,我们可以得出以下经验:
- 遵循框架约定:充分利用框架提供的默认实现,避免不必要的覆写
- 理解自动化机制:深入了解BaseTool的模式生成原理,知其所以然
- 保持模式简洁:让Pydantic模型定义驱动模式生成,而非手动构造
对于Agency-Swarm开发者来说,合理使用工具类继承体系可以大幅提升开发效率,同时避免类似序列化问题的发生。当遇到框架行为不符合预期时,建议先查阅框架文档或源码,理解其设计意图后再进行定制开发。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00