NVIDIA k8s-device-plugin 部署问题排查与解决方案
问题背景
在 Kubernetes 集群中部署 NVIDIA GPU 设备插件时,经常会遇到节点无法正确识别 GPU 资源的问题。本文将以一个实际案例为基础,详细介绍如何排查和解决这类问题。
环境配置
硬件环境
- 服务器型号:Dell 服务器
- GPU 配置:4 块 NVIDIA Tesla T4 显卡
- 节点类型:Kubernetes 单节点集群(同时作为控制平面和工作节点)
软件环境
- 操作系统:Ubuntu 24.04.2 LTS
- 内核版本:6.8.0-58-generic
- Kubernetes 版本:v1.32.2
- 容器运行时:containerd 2.0.3
- NVIDIA 驱动版本:570.133.20
- CUDA 版本:12.8
问题现象
在完成 NVIDIA 设备插件部署后,通过 kubectl describe node 命令检查节点资源时,发现 GPU 资源未被正确识别:
Capacity:
cpu: 48
ephemeral-storage: 227966388Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 394810384Ki
pods: 110
同时,NVIDIA 设备插件容器日志中显示以下错误信息:
Incompatible strategy detected auto
If this is a GPU node, did you configure the NVIDIA Container Toolkit?
排查过程
1. 基础环境检查
首先确认基础环境配置正确:
- 通过
lspci命令确认 GPU 设备已被系统识别 - 使用
nvidia-smi命令确认驱动安装正常 - 检查 Kubernetes 节点状态正常
2. 容器运行时配置检查
重点检查 containerd 的配置文件 /etc/containerd/config.toml,发现配置中存在一个关键问题:
[plugins."io.containerd.cri.v1.runtime".containerd.runtimes.nvidia.options]
BinaryName = "/usr/bin/nvidia-container-runtime"
binaryName = "/usr/local/bin/runc" # 这一行是冗余且错误的配置
systemdCgroup = true
这个配置文件中同时指定了 BinaryName 和 binaryName,其中 binaryName 错误地指向了标准的 runc 路径,而不是 NVIDIA 容器运行时。
3. RuntimeClass 配置
在尝试通过 Helm 安装设备插件时,遇到了 RuntimeClass 不存在的错误。这是因为 Kubernetes 需要明确知道如何使用 NVIDIA 运行时来运行容器。
解决方案是创建以下 RuntimeClass 资源:
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
name: nvidia
handler: nvidia
解决方案
1. 修正 containerd 配置
删除冗余的 binaryName 配置行,确保 NVIDIA 运行时配置简洁正确:
[plugins."io.containerd.cri.v1.runtime".containerd.runtimes.nvidia.options]
BinaryName = "/usr/bin/nvidia-container-runtime"
systemdCgroup = true
修改后需要重启 containerd 服务:
sudo systemctl restart containerd
2. 正确安装设备插件
使用 Helm 安装 NVIDIA 设备插件时,确保指定正确的运行时类:
runtimeClassName: nvidia
3. 验证结果
完成上述修改后,节点正确显示了 GPU 资源:
Capacity:
cpu: 48
ephemeral-storage: 227966388Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 394810384Ki
nvidia.com/gpu: 4
pods: 110
经验总结
-
配置文件的准确性至关重要:即使是看似微小的配置错误(如大小写不一致或冗余配置)也可能导致整个功能失效。
-
运行时配置的完整性:在 Kubernetes 中使用特殊容器运行时(如 NVIDIA 运行时)时,需要同时配置容器引擎和 Kubernetes 的 RuntimeClass。
-
排查顺序建议:
- 首先确认硬件和驱动层正常工作
- 然后检查容器运行时配置
- 最后验证 Kubernetes 层面的资源发现
-
日志分析:设备插件的日志通常会提供明确的错误原因和解决建议,应作为排查的第一手资料。
通过系统性地排查和验证每个环节,可以确保 NVIDIA GPU 资源在 Kubernetes 集群中被正确识别和管理,为后续的 AI/ML 工作负载提供可靠的硬件支持。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00