在NVIDIA Omniverse Orbit中实现双臂机器人碰撞检测的技术方案
概述
在机器人仿真领域,精确检测物体间的接触力对于开发安全可靠的机器人控制系统至关重要。本文将详细介绍如何在NVIDIA Omniverse Orbit仿真平台中实现双臂机器人之间的碰撞检测功能。
技术背景
Omniverse Orbit作为NVIDIA推出的机器人仿真平台,提供了强大的物理引擎和传感器模拟能力。其中,接触传感器(Contact Sensor)是检测物体间相互作用力的关键组件。然而,平台默认的接触传感器实现存在一个限制:它只能实现"一对多"的接触力检测模式。
问题分析
在双臂机器人应用场景中,我们需要同时监测两个机械臂之间的相互碰撞情况。这本质上是一个"多对多"的检测需求。直接使用单个接触传感器无法满足这一需求,因为:
- 单个传感器只能监测一个主体与其他多个物体的接触情况
- 无法直接获取两个特定物体之间的精确接触力数据
解决方案
通过深入研究发现,Omniverse Orbit平台实际上已经提供了实现这一功能的完整工具链,只是需要合理配置:
-
为每个机械臂单独配置接触传感器:需要为两个机械臂分别创建独立的接触传感器实例
-
设置过滤条件:通过
filter_prim_paths_expr参数,可以指定每个传感器只检测与特定物体的接触 -
访问力矩阵数据:通过
sensor.data.force_matrix_w可以获取精确的接触力数据
实现示例
以下是配置双臂机器人碰撞检测的关键代码片段:
# 激活机械臂A的接触传感器
self.scene.arm_a.spawn.activate_contact_sensors = True
# 配置机械臂A的接触传感器,只检测与机械臂B的接触
self.scene.contact_sensor_arm_a = ContactSensorCfg(
prim_path="{ENV_REGEX_NS}/ArmA",
filter_prim_paths_expr=["{ENV_REGEX_NS}/ArmB"],
update_period=0.0,
)
# 同理配置机械臂B的传感器
self.scene.arm_b.spawn.activate_contact_sensors = True
self.scene.contact_sensor_arm_b = ContactSensorCfg(
prim_path="{ENV_REGEX_NS}/ArmB",
filter_prim_paths_expr=["{ENV_REGEX_NS}/ArmA"],
update_period=0.0,
)
注意事项
-
性能优化:需要合理设置
max_contact_data_count参数,避免因数据量过大影响仿真性能 -
坐标系转换:获取的接触力数据是在世界坐标系下的,必要时需要进行坐标系转换
-
实时性考虑:
update_period参数设置为0表示每帧更新,可根据实际需求调整
应用价值
该技术方案可广泛应用于:
- 双臂协同作业的安全控制
- 机器人防碰撞算法开发
- 接触力反馈控制研究
- 机器人学习中的奖励函数设计
总结
通过合理配置Omniverse Orbit的接触传感器系统,开发者可以精确检测双臂机器人之间的碰撞情况。这一技术不仅解决了实际工程问题,也为更复杂的多体交互仿真提供了参考方案。未来随着平台功能的不断完善,相信会提供更便捷的多对多接触检测接口。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00