NVIDIA Omniverse Orbit项目中双机械臂协同控制问题的技术解析
2025-06-24 11:09:47作者:史锋燃Gardner
概述
在NVIDIA Omniverse Orbit机器人仿真平台中,开发者尝试实现双Franka机械臂协同举升物体的场景时遇到了机械臂剧烈抖动的问题。本文将从技术角度分析该问题的成因及解决方案。
问题现象
开发者在实现双Franka机械臂协同工作时,观察到以下现象:
- 机械臂在执行动作时出现明显抖动
- 动作稳定性不足,影响协同操作效果
- 虽然使用了MAPPO多智能体强化学习算法,但控制效果不理想
技术背景
该实现基于以下技术栈:
- NVIDIA Omniverse Orbit机器人仿真平台
- skrl强化学习库
- MAPPO(多智能体近端策略优化)算法
- Franka机械臂模型
原因分析
1. 动作预处理问题
在动作预处理阶段,开发者对机械臂的夹爪动作进行了二值化处理:
robot_1_targets = self.robot_1_dof_targets + self.actions["rb_1"].clone()
self.robot_1_dof_targets[self.robot_1_left_finger_link_idx] = torch.where(
robot_1_targets[self.robot_1_left_finger_link_idx] > 0,
self.open_translation,
self.close_translation
)
这种处理方式可能导致:
- 动作指令突变
- 缺乏平滑过渡
- 产生不必要的力矩波动
2. 观测空间设计
观测空间包含了:
- 关节位置相对值
- 关节速度相对值
- 末端执行器位置
- 目标位置
- 当前动作
这种设计虽然全面,但可能存在:
- 特征尺度不统一
- 冗余信息干扰
- 关键状态特征不足
3. 强化学习参数配置
MAPPO配置中:
- 学习率调度使用KL自适应
- 折扣因子0.99
- 熵损失系数0.01
- 值损失系数1.0
这些参数对于复杂协同任务可能不够优化,特别是:
- KL阈值设置(0.008)可能过于严格
- 批量大小(24)可能不足
- 学习率(1e-4)可能需要调整
解决方案
1. 动作平滑处理
建议改进动作预处理:
- 加入低通滤波
- 实现动作插值
- 使用更平滑的夹爪控制策略
2. 观测空间优化
可考虑:
- 归一化各观测维度
- 增加机械臂间相对位置观测
- 加入接触力信息
- 简化冗余特征
3. 算法参数调整
针对协同任务特点:
- 增大批量大小
- 调整KL阈值
- 优化学习率调度策略
- 平衡策略和价值损失权重
实施建议
- 先验证单机械臂控制的稳定性
- 逐步增加协同复杂度
- 加入碰撞检测和避让机制
- 实现确定性评估模式
结论
双机械臂协同控制在仿真环境中面临诸多挑战,需要综合考虑动作处理、观测设计和算法参数等多个方面。通过系统性的问题分析和针对性优化,可以有效解决机械臂抖动问题,实现稳定的协同操作。
该案例也展示了Omniverse Orbit平台在复杂机器人控制研究中的强大能力,为多智能体协同控制研究提供了理想的实验环境。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
215
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818