Enso 2025.1.1 版本发布:可视化编程与数据分析的革新
Enso 是一款创新的可视化编程语言和集成开发环境(IDE),专为数据分析和科学计算而设计。它通过直观的图形界面,将复杂的编程概念转化为可视化的节点和连接,大大降低了编程门槛,同时保持了强大的计算能力。Enso 不仅支持传统的数据处理任务,还提供了丰富的可视化工具和数据库连接功能,使其成为数据科学家和分析师的有力助手。
核心功能更新
1. 增强的可视化编程体验
最新版本的 Enso IDE 对用户界面进行了多项优化,显著提升了编程体验。组件浏览器现在以分组形式展示功能模块,并支持显示组件文档摘要,帮助开发者快速理解和使用各种功能。对于特定数据类型,系统还会智能推荐相关组件,进一步简化开发流程。
在节点编辑方面,数值和文本节点的输入变得更加智能。当用户输入纯数字时,系统会自动优化匹配逻辑,避免不相关的组件建议。同时,未闭合的文本字面量现在会自动补全,减少了语法错误的发生。
2. 文档编辑功能增强
文档面板获得了多项新功能,支持更丰富的文档编写体验。现在用户可以:
- 创建编号列表和嵌套列表
- 使用专用按钮编辑顶级 Markdown 元素
- 通过按钮快速设置文本为粗体或斜体
- 插入超链接
- 编辑表格单元格时,使用 Tab 键跳转到下一个单元格,Enter 键跳转到下一行
这些改进使得在 Enso 中编写和维护项目文档变得更加高效和直观。
3. 云文件浏览器功能扩展
云文件浏览器功能得到了显著增强,特别是在处理文件输出组件时:
- 显示并高亮当前设置的文件
- 提供文件名输入框
- 支持创建新目录
- 允许重命名现有目录
- 团队及以上计划的用户可访问共享目录
这些改进使得云存储操作更加流畅,特别是在数据处理流水线中管理输入输出文件时。
标准库功能升级
1. 数据处理能力扩展
Enso 标准库增加了多项强大的数据处理功能:
Table.offset和Column.offset方法支持数据分页处理Table.generate_rows方法简化了数据生成- 新增正则表达式支持,包括
regex_match过滤功能 - 表达式语言现在支持基本算术运算、π和e常数
- 改进了分隔文件读取,自动处理列数不一致的行
2. 数据库连接增强
数据库连接功能获得了多项重要更新:
- 实现了通用 JDBC 连接支持
- 支持通过外部驱动程序的通用 JDBC 连接
- Snowflake 连接器新增密钥对认证支持
- 为 SQL Server、Snowflake、PostgreSQL 和 SQLite 添加了
DB_Table.offset方法
这些改进大大扩展了 Enso 与各种数据库系统的互操作性。
3. 新增进度 API
引入了全新的进度 API,使长时间运行的任务能够向用户提供执行进度反馈,提升了用户体验。
语言与运行时改进
1. 类型系统增强
Enso 的类型系统获得了多项重要更新:
- 引入了交集类型(Intersection types)和类型检查
- 改进了类型推断,现在更倾向于模块方法而非 Any 实例方法
- 为交集类型实现了对称、传递和自反的相等性
- 允许没有构造函数的类型声明为 public
2. 错误处理与语法改进
- 现在会提升损坏的值而不是忽略它们
- 单行内联参数定义不再允许使用空格而不加括号
- 改进了命名参数不匹配时的错误信息
- 将值注册为多个托管资源现在会报错
3. 模块系统改进
- 支持使用
fn...引用任何模块函数 - 项目的本地库可以添加到
polyglot/lib目录 - IR 定义现在由注解处理器生成
可视化与交互改进
1. 表格可视化优化
表格可视化组件进行了重大改进:
- 采用服务器端过滤和排序
- 支持懒加载行数据
- 优化了大数据集的处理性能
2. 组件交互优化
- 组件菜单下的"添加组件"按钮重新设计为从输出端口伸出的小按钮
- 修复了删除节点或连接后错误选择节点的问题
- 改进了文本字面量交互,不再丢失重做栈
- 工具提示会在点击按钮时正确隐藏
3. 可视化类型调整
- 禁用了热图和直方图可视化类型
- 地理地图可视化现在需要提供 Mapbox API 令牌
总结
Enso 2025.1.1 版本带来了全方位的改进,从核心语言特性到用户界面交互,从数据处理能力到数据库连接支持,都进行了显著增强。这些改进使得 Enso 在可视化编程和数据科学领域的竞争力进一步提升,为开发者提供了更强大、更易用的工具。
特别值得注意的是,新版本在类型系统、错误处理和模块化方面的改进,使得大规模项目开发更加可靠;而在用户体验方面的优化,如智能组件推荐、文档编辑增强和云文件管理,则大大提高了日常开发效率。
对于数据科学家和分析师来说,新增的正则表达式支持、改进的表格处理能力和增强的数据库连接功能,将直接提升数据处理的效率和表达能力。Enso 继续朝着降低技术门槛同时不牺牲表达力的方向稳步前进,是值得关注的可视化编程解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00