基于Scikit-learn的无监督异常检测技术解析
2025-07-10 14:46:34作者:齐冠琰
异常检测概述
异常检测(Anomaly Detection)是机器学习中一个重要任务,旨在识别数据集中与大多数数据显著不同的观测值。根据Johnson(1992)和Hawkins(1980)的定义,异常值是指与数据集其余部分不一致或明显偏离其他观测值的样本。
异常检测的三种类型
-
监督式异常检测:
- 同时有正常数据和异常数据的标签
- 类似于稀有类别挖掘或不平衡分类问题
-
半监督式异常检测(新颖性检测):
- 只有正常数据可用于训练
- 算法仅学习正常数据的特征
-
无监督异常检测(离群值检测):
- 没有标签,训练集包含正常和异常数据
- 假设异常数据非常罕见
无监督异常检测方法实践
1. 数据准备
我们首先生成一个二维高斯混合数据集用于可视化不同算法的效果:
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
X, y = make_blobs(n_features=2, centers=3, n_samples=500, random_state=42)
plt.scatter(X[:, 0], X[:, 1])
plt.show()
2. 基于密度估计的异常检测
核密度估计(KDE)是一种常用的密度估计方法:
from sklearn.neighbors.kde import KernelDensity
from scipy.stats.mstats import mquantiles
# 高斯核密度估计
kde = KernelDensity(kernel='gaussian').fit(X)
kde_X = kde.score_samples(X) # 获取样本的对数似然
# 设置异常阈值(95%分位数)
alpha_set = 0.95
tau_kde = mquantiles(kde_X, 1. - alpha_set)
可视化密度估计结果,红色等高线表示异常边界:
Z_kde = kde.score_samples(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_kde, levels=tau_kde, colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1])
plt.show()
3. 单类支持向量机(One-Class SVM)
在高维数据中,密度估计方法效率会下降,此时可以使用One-Class SVM:
from sklearn.svm import OneClassSVM
nu = 0.05 # 异常值比例上限
ocsvm = OneClassSVM(kernel='rbf', gamma=0.05, nu=nu).fit(X)
X_outliers = X[ocsvm.predict(X) == -1] # 预测为异常的点
One-Class SVM的支持向量构成了异常点,我们可以可视化决策函数:
Z_ocsvm = ocsvm.decision_function(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_ocsvm, levels=[0], colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1])
plt.scatter(X_outliers[:, 0], X_outliers[:, 1], color='red')
plt.show()
4. 孤立森林(Isolation Forest)
孤立森林基于随机树构建,异常点会在较浅的深度被隔离:
from sklearn.ensemble import IsolationForest
iforest = IsolationForest(n_estimators=300, contamination=0.10).fit(X)
Z_iforest = iforest.decision_function(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_iforest, levels=[iforest.threshold_], colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1], s=1.)
plt.show()
实际应用:手写数字异常检测
我们使用MNIST手写数字数据集演示异常检测的实际应用:
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.images.reshape((len(digits.images), -1))
X_5 = data[digits.target == 5] # 选择数字5的样本
使用孤立森林检测异常数字:
iforest = IsolationForest(contamination=0.05).fit(X_5)
iforest_X = iforest.decision_function(X_5) # 异常得分
# 显示最正常的样本
X_strong_inliers = X_5[np.argsort(iforest_X)[-10:]]
# 显示最异常的样本
X_outliers = X_5[iforest.predict(X_5) == -1]
总结
本文介绍了三种主要的无监督异常检测方法:
- 核密度估计:适合低维数据,直观易懂
- 单类SVM:适合高维数据,通过核技巧处理复杂分布
- 孤立森林:基于树的方法,计算效率高,适合大规模数据
每种方法都有其适用场景,在实际应用中需要根据数据特点和需求选择合适的方法。异常检测在欺诈检测、工业质检、医疗诊断等领域都有广泛应用。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322