基于Scikit-learn的无监督异常检测技术解析
2025-07-10 08:53:57作者:齐冠琰
异常检测概述
异常检测(Anomaly Detection)是机器学习中一个重要任务,旨在识别数据集中与大多数数据显著不同的观测值。根据Johnson(1992)和Hawkins(1980)的定义,异常值是指与数据集其余部分不一致或明显偏离其他观测值的样本。
异常检测的三种类型
-
监督式异常检测:
- 同时有正常数据和异常数据的标签
- 类似于稀有类别挖掘或不平衡分类问题
-
半监督式异常检测(新颖性检测):
- 只有正常数据可用于训练
- 算法仅学习正常数据的特征
-
无监督异常检测(离群值检测):
- 没有标签,训练集包含正常和异常数据
- 假设异常数据非常罕见
无监督异常检测方法实践
1. 数据准备
我们首先生成一个二维高斯混合数据集用于可视化不同算法的效果:
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
X, y = make_blobs(n_features=2, centers=3, n_samples=500, random_state=42)
plt.scatter(X[:, 0], X[:, 1])
plt.show()
2. 基于密度估计的异常检测
核密度估计(KDE)是一种常用的密度估计方法:
from sklearn.neighbors.kde import KernelDensity
from scipy.stats.mstats import mquantiles
# 高斯核密度估计
kde = KernelDensity(kernel='gaussian').fit(X)
kde_X = kde.score_samples(X) # 获取样本的对数似然
# 设置异常阈值(95%分位数)
alpha_set = 0.95
tau_kde = mquantiles(kde_X, 1. - alpha_set)
可视化密度估计结果,红色等高线表示异常边界:
Z_kde = kde.score_samples(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_kde, levels=tau_kde, colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1])
plt.show()
3. 单类支持向量机(One-Class SVM)
在高维数据中,密度估计方法效率会下降,此时可以使用One-Class SVM:
from sklearn.svm import OneClassSVM
nu = 0.05 # 异常值比例上限
ocsvm = OneClassSVM(kernel='rbf', gamma=0.05, nu=nu).fit(X)
X_outliers = X[ocsvm.predict(X) == -1] # 预测为异常的点
One-Class SVM的支持向量构成了异常点,我们可以可视化决策函数:
Z_ocsvm = ocsvm.decision_function(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_ocsvm, levels=[0], colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1])
plt.scatter(X_outliers[:, 0], X_outliers[:, 1], color='red')
plt.show()
4. 孤立森林(Isolation Forest)
孤立森林基于随机树构建,异常点会在较浅的深度被隔离:
from sklearn.ensemble import IsolationForest
iforest = IsolationForest(n_estimators=300, contamination=0.10).fit(X)
Z_iforest = iforest.decision_function(grid).reshape(xx.shape)
plt.contour(xx, yy, Z_iforest, levels=[iforest.threshold_], colors='red', linewidths=3)
plt.scatter(X[:, 0], X[:, 1], s=1.)
plt.show()
实际应用:手写数字异常检测
我们使用MNIST手写数字数据集演示异常检测的实际应用:
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.images.reshape((len(digits.images), -1))
X_5 = data[digits.target == 5] # 选择数字5的样本
使用孤立森林检测异常数字:
iforest = IsolationForest(contamination=0.05).fit(X_5)
iforest_X = iforest.decision_function(X_5) # 异常得分
# 显示最正常的样本
X_strong_inliers = X_5[np.argsort(iforest_X)[-10:]]
# 显示最异常的样本
X_outliers = X_5[iforest.predict(X_5) == -1]
总结
本文介绍了三种主要的无监督异常检测方法:
- 核密度估计:适合低维数据,直观易懂
- 单类SVM:适合高维数据,通过核技巧处理复杂分布
- 孤立森林:基于树的方法,计算效率高,适合大规模数据
每种方法都有其适用场景,在实际应用中需要根据数据特点和需求选择合适的方法。异常检测在欺诈检测、工业质检、医疗诊断等领域都有广泛应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328