开源项目 `ml-training-intro` 使用指南
1. 项目介绍
ml-training-intro
是由 Andreas Mueller 创建的一个开源项目,旨在提供“机器学习入门”课程的教学材料和其他相关信息。该项目涵盖了机器学习的基础知识,包括监督学习、无监督学习、交叉验证和网格搜索、预处理、线性模型、树和森林、梯度提升树等内容。
2. 项目快速启动
2.1 获取项目材料
如果你熟悉 Git,可以通过克隆 GitHub 仓库来获取项目材料:
git clone https://github.com/amueller/ml-training-intro.git
如果你不熟悉 Git,可以通过浏览器访问 GitHub 仓库 并点击右上角的“Download”按钮下载 ZIP 文件。
2.2 安装依赖
该项目需要以下 Python 包:
- NumPy
- SciPy
- matplotlib
- pillow
- pandas
- scikit-learn (>=0.18.1)
- IPython
- Jupyter Notebook
推荐使用 Anaconda 来安装这些依赖包,Anaconda 是一个包含大多数科学计算和数据分析所需 Python 包的发行版。
2.3 启动 Jupyter Notebook
在终端中进入项目目录并启动 Jupyter Notebook:
cd ml-training-intro
jupyter notebook
在浏览器中打开 Jupyter Notebook 后,你可以通过运行 check_env.ipynb
文件来检查环境是否配置正确。
3. 应用案例和最佳实践
3.1 监督学习
监督学习是机器学习中最常见的任务之一。在这个项目中,你可以学习如何使用线性模型进行回归和分类,以及如何使用树和森林模型进行分类和回归。
3.2 无监督学习
无监督学习涉及在没有标签的数据上进行学习。项目中涵盖了聚类算法,如 K-Means 和层次聚类,帮助你理解如何在没有标签的数据中发现模式。
3.3 交叉验证和网格搜索
交叉验证和网格搜索是模型选择和调优的重要工具。通过项目中的示例,你可以学习如何使用这些技术来提高模型的性能。
4. 典型生态项目
4.1 scikit-learn
scikit-learn
是一个强大的 Python 机器学习库,提供了各种机器学习算法的实现。ml-training-intro
项目中的大部分代码示例都依赖于 scikit-learn
。
4.2 Jupyter Notebook
Jupyter Notebook 是一个交互式计算环境,支持多种编程语言。它非常适合用于数据分析和机器学习,因为它允许你将代码、文本和可视化内容结合在一起。
4.3 NumPy 和 pandas
NumPy 和 pandas 是 Python 中用于科学计算和数据分析的两个核心库。NumPy 提供了强大的多维数组对象和各种数学函数,而 pandas 则提供了高效的数据结构和数据分析工具。
通过这些生态项目的结合使用,ml-training-intro
项目能够提供一个全面的机器学习入门体验。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09