ndarray 项目技术文档
ndarray 是一个模板库,提供类似于 Python 'numpy' 的多维数组对象在 C++ 中的使用。本文档旨在帮助用户安装、使用和理解 ndarray 项目。
1. 安装指南
ndarray 可以使用 CMake 进行构建和测试。以下是详细的安装步骤:
-
创建一个构建目录:
mkdir build cd build -
运行 CMake 配置:
cmake .. -
编译项目:
make -
运行测试:
make test
构建过程中可以选择包含可选依赖项,这由 NDARRAY_* 的 CMake 选项控制。依赖项的解析可以通过环境变量 PYBIND11_DIR、EIGEN_DIR 和 FFTW_DIR 控制。例如,要构建一个使用替代 Eigen3 安装位置并禁用 FFTW 测试的版本,可以将 cmake .. 替换为 EIGEN_DIR=/opt/local cmake -DNDARRY_FFTW=OFF ..。
注意:ndarray 的构建系统在 pybind11 2.1.x 版本下不会为 pybind11 输出正确的后缀(由于 pybind11 本身的错误)。为了避免这个问题,请升级到 pybind11 2.2.x,或者尝试使用 ndarray 提交 f46c0f0ff876ceab5aaa3286e5f6e86902e72feb 中的(现已回滚的)补丁。
版本 1.4.2 是最后一个支持 SWIG 的 ndarray 版本。
版本 1.5.3 是最后一个支持 Boost.Python 的 ndarray 版本。
2. 项目使用说明
ndarray 提供了与 Python 'numpy' 类似的多维数组操作。用户可以通过阅读官方文档了解更多信息。
3. 项目 API 使用文档
ndarray 的 API 设计旨在模仿 Python 'numpy' 的接口。以下是 API 的简要概述:
Array<T>:表示一个元素类型为 T 的多维数组。view():用于创建数组视图,支持多维切片和索引操作。const_array_cast<T>:用于将数组转换为具有不同元素类型的数组。static_dimension_cast<T>:用于在保持数组维度不变的情况下转换数组。dynamic_dimension_cast<T>:用于在可能减少数组维度的条件下转换数组。
更多 API 细节和示例,请参考官方文档。
4. 项目安装方式
如前所述,ndarray 的安装方式是通过 CMake。以下是简要的安装步骤:
mkdir build
cd build
cmake ..
make
确保你的系统中已经安装了 CMake、编译器和所有必要的依赖项。
以上文档旨在帮助用户更好地了解和使用 ndarray 项目,祝您使用愉快!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00