TorchProfile 使用教程
2024-08-17 11:17:07作者:田桥桑Industrious
项目介绍
TorchProfile 是一个用于计算 PyTorch 模型中乘积累加运算(MACs)和浮点运算(FLOPs)的通用且准确的分析器。它基于 PyTorch 的 JIT 追踪功能,比基于 ONNX 的分析器更通用,因为某些 PyTorch 操作目前不受 ONNX 支持。此外,它也比基于钩子的分析器更准确,因为钩子无法分析 PyTorch nn.Module 内部的操作。
项目快速启动
安装
首先,通过 pip 安装 TorchProfile:
pip install torchprofile
使用示例
以下是一个简单的使用示例,展示了如何测量一个 PyTorch 模型的 MACs:
import torch
from torchvision.models import resnet18
from torchprofile import profile_macs
# 定义模型和输入
model = resnet18()
inputs = torch.randn(1, 3, 224, 224)
# 测量 MACs
macs = profile_macs(model, inputs)
print(f"MACs: {macs}")
应用案例和最佳实践
案例1:图像分类模型
在图像分类任务中,TorchProfile 可以帮助你了解不同模型的计算复杂度。例如,比较 ResNet 和 MobileNet 的 MACs:
from torchvision.models import mobilenet_v2
model_resnet = resnet18()
model_mobilenet = mobilenet_v2()
inputs = torch.randn(1, 3, 224, 224)
macs_resnet = profile_macs(model_resnet, inputs)
macs_mobilenet = profile_macs(model_mobilenet, inputs)
print(f"ResNet18 MACs: {macs_resnet}")
print(f"MobileNetV2 MACs: {macs_mobilenet}")
最佳实践
- 选择合适的模型:根据计算资源和任务需求选择合适的模型。
- 优化模型结构:通过分析 MACs,可以针对性地优化模型结构,减少计算量。
典型生态项目
PyTorch
TorchProfile 是基于 PyTorch 开发的,因此与 PyTorch 生态系统紧密结合。你可以将 TorchProfile 用于任何 PyTorch 模型,包括自定义模型。
ONNX
虽然 TorchProfile 不依赖于 ONNX,但你可以将 PyTorch 模型转换为 ONNX 格式,以便在其他平台上使用。
torchvision
torchvision 提供了许多预训练的图像分类模型,这些模型可以直接与 TorchProfile 一起使用,以分析其计算复杂度。
通过以上内容,你可以快速了解并使用 TorchProfile 来分析和优化你的 PyTorch 模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758