Stepik-DL-NLP 项目启动与配置教程
2025-05-27 12:49:27作者:仰钰奇
1. 项目目录结构及介绍
Stepik-DL-NLP 项目是一个开源项目,用于学习和实践深度学习在自然语言处理(NLP)中的应用。以下是项目的目录结构及其说明:
stepik-dl-nlp/
├── datasets/ # 存放数据集的目录
├── dlnlputils/ # 自定义的工具函数和类库
├── img/ # 存储与项目相关的图像文件
├── models/ # 存放模型定义和训练脚本的目录
├── task11_kaggle/ # 第11个任务:Kaggle比赛的代码
├── 7_1_conclusion.pdf # 第7.1节的结论文档
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── clone_pytorch_transformers.sh # 克隆 PyTorch Transformers 仓库的脚本
├── requirements.txt # 项目依赖的 Python 包列表
├── task10_bert_squad.ipynb # 第10个任务:BERT Squad 的 Jupyter 笔记本
├── task1_20newsgroups.ipynb # 第1个任务:20个新闻组的 Jupyter 笔记本
├── task2_word_embeddings.ipynb # 第2个任务:词嵌入的 Jupyter 笔记本
├── task3_cnn_postag.ipynb # 第3个任务:CNN 词性标注的 Jupyter 笔记本
├── task4_RNN_name_generator.ipynb # 第4个任务:RNN 姓名生成器的 Jupyter 笔记本
├── task5_text_transformer.ipynb # 第5个任务:文本变换器的 Jupyter 笔记本
├── task6_recipe_ner.ipynb # 第6个任务:菜谱命名实体识别的 Jupyter 笔记本
├── task7.1_aspect_sentiment_eval.ipynb # 第7.1个任务:方面情感分析的 Jupyter 笔记本
├── task7_aspect_sentiment_eval.ipynb # 第7个任务:情感分析的 Jupyter 笔记本
├── task8_generate_stackoverflow_code.ipynb # 第8个任务:生成 Stack Overflow 代码的 Jupyter 笔记本
└── task9_bert_sentiment_analysis.ipynb # 第9个任务:BERT 情感分析的 Jupyter 笔记本
2. 项目的启动文件介绍
项目的启动主要是通过 Jupyter Notebook 来进行。在项目的根目录中,可以使用以下命令启动 Jupyter Notebook:
ipython notebook
如果你希望使用 Google Colab 来运行这些 Jupyter 笔记本,可以按照以下步骤操作:
- 在 Colab 中创建一个新的笔记本。
- 在第一个代码单元格中运行以下命令来克隆本项目并安装所需的依赖:
!git clone https://github.com/sic-rus-ai/stepik-dl-nlp.git && pip install -r stepik-dl-nlp/requirements.txt
import sys; sys.path.append('./stepik-dl-nlp')
- 根据需要设置
device='cpu'或device='cuda',并选择合适的 Runtime 类型(CPU/TPU/GPU)。
3. 项目的配置文件介绍
项目的配置主要通过 requirements.txt 文件来管理。这个文件列出了项目依赖的 Python 包,如下所示:
numpy==1.19.2
pandas==1.1.5
scikit-learn==0.24.2
torch==1.7.0+cu110
tqdm==4.50.2
transformers==4.6.0
在本地环境中,你可以使用以下命令安装这些依赖:
pip install -r requirements.txt
确保在开始任何项目任务之前,所有依赖都已正确安装。如果需要调整项目配置,可以在 requirements.txt 文件中进行相应的修改。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.64 K
Ascend Extension for PyTorch
Python
128
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
191
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
591
128
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
496
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
47
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
179
64
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456