DL-Text 深度学习文本预处理库教程
项目介绍
DL-Text 是一个专注于深度学习场景下文本预处理的 Python 库。它提供了全面的数据清洗和特征提取功能,并包含了训练 DNN、CNN、RNN 以及 LSTM 等深度模型的示例代码。项目中整合了多种手工地设计的词法和语义特征计算方法,如词语重叠、n-gram 重叠、TF-IDF 等,并且支持常见的评估指标计算,如 MAP、MRR 等。DL-Text 为研究者和开发者提供了一个从数据到模型的一站式解决方案。
项目快速启动
安装
首先,克隆项目仓库到本地:
git clone https://github.com/GauravBh1010tt/DL-text.git
cd DL-text
然后,安装所需的依赖包:
pip install -r requirements.txt
示例代码
以下是一个简单的示例,展示如何使用 DL-Text 进行文本预处理和模型训练:
import dl_text
from keras.models import Model
from keras.layers import Input, Dense, Dropout
# 加载预训练的词向量模型
wordVec_model = dl_text.loadGloveModel('path_of_the_embeddings/glove.6B.50d.txt')
# 处理数据
data_inp, embedding_matrix = dl_text.process_data(sent_l=data, wordVec_model=wordVec_model, dimx=10)
# 定义模型
def model_dnn(dimx, embedding_matrix):
inpx = Input(shape=(dimx,), dtype='int32', name='inpx')
embed = dl_text.word2vec_embedding_layer(embedding_matrix)(inpx)
flat_embed = Flatten()(embed)
nnet_h = Dense(units=10, activation='sigmoid')(flat_embed)
nnet_out = Dense(units=2, activation='softmax')(nnet_h)
model = Model(inputs=inpx, outputs=nnet_out)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# 训练模型
model = model_dnn(dimx=10, embedding_matrix=embedding_matrix)
model.fit(data_inp, labels, epochs=10, batch_size=32)
应用案例和最佳实践
情感分析与评论分类
利用 DL-Text 进行数据清理后,可以快速构建并调整基于深度学习的情感识别模型,适用于产品评论、社交媒体情绪分析等多个场景。
问答系统的构建
借助于双通道模型设置,能够高效对比问句和答句之间的关联性,从而提升答案检索准确性。
机器翻译与语义理解
通过预处理和手工地设计特征结合的方式,加深对原文本的理解,改善翻译质量和上下文感知能力。
文本相似度计算
利用词汇和语义特征计算功能,DL-Text 能够有效识别文档间的语义相似度,广泛应用于学术文献检索、智能推荐系统等领域。
典型生态项目
Keras
Keras 是一个高层神经网络 API,能够运行在 TensorFlow、CNTK 或 Theano 之上。DL-Text 无缝对接 Keras,简化环境配置和代码编写工作。
TensorFlow
TensorFlow 是一个开源的深度学习框架,由 Google 开发。DL-Text 支持 TensorFlow,为深度学习模型的训练和部署提供了强大的后端支持。
Gensim
Gensim 是一个用于主题建模和文档相似性分析的 Python 库。DL-Text 可以与 Gensim 结合使用,进行更复杂的文本分析和处理任务。
通过以上内容,您可以快速上手并深入了解 DL-Text 的使用方法和应用场景。希望 DL-Text 能为您的 NLP 研究和开发工作带来便利。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00