abracadabra 项目启动与配置教程
2025-05-26 17:39:25作者:薛曦旖Francesca
1. 项目目录结构及介绍
abracadabra 项目是一个用 Python 编写的音识别库,其目录结构如下:
abracadabra/
├── docs/ # 项目文档
├── samples/ # 示例文件
├── tests/ # 测试文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git 忽略文件
├── Hyperparameter search.ipynb # 超参数搜索 Jupyter Notebook 文件
├── LICENSE.md # 许可证文件
├── README.rst # 项目说明文件
├── requirements.txt # 项目依赖文件
├── results.csv # 结果文件
├── settings.py # 配置文件
└── setup.py # 设置文件
docs/: 存放项目文档,包括项目的详细说明和API文档。samples/: 包含示例文件,用于展示如何使用项目。tests/: 包含测试文件,用于验证项目的功能。.gitattributes: 定义如何处理项目的特定文件。.gitignore: 定义Git应该忽略的文件和目录。Hyperparameter search.ipynb: Jupyter Notebook 文件,用于超参数搜索。LICENSE.md: 包含项目的许可证信息。README.rst: 包含项目的简要介绍和基本信息。requirements.txt: 列出了项目依赖的Python包。results.csv: 存储实验结果的CSV文件。settings.py: 包含项目的配置信息。setup.py: 包含项目的设置信息,用于安装项目。
2. 项目的启动文件介绍
项目的启动主要通过命令行脚本 song_recogniser 进行。以下是启动脚本的基本使用方法:
song_recogniser initialise # 初始化数据库
song_recogniser register /path/to/your/music/file # 注册音乐文件
song_recogniser recognise --listen # 识别正在播放的音乐
initialise: 初始化数据库,为项目运行做准备。register: 注册音乐文件到数据库,以便识别。recognise: 识别功能,--listen参数表示实时监听并识别。
3. 项目的配置文件介绍
项目的配置主要通过 settings.py 文件进行。以下是配置文件的简要说明:
# settings.py
# 数据库配置
DATABASE = {
'NAME': 'abracadabra.db',
'ENGINE': 'sqlite3',
}
# 音频处理配置
AUDIO = {
'SAMPLE_RATE': 44100,
'CHANNELS': 1,
'FORMAT': 'PCM_16',
'BUFFER_SIZE': 4096,
}
# 识别算法配置
RECOGNITION = {
'HASH_SIZE': 20,
'FINGERPRINTS_PER_SECOND': 20,
'MATCH_THRESHOLD': 0.5,
}
在这个配置文件中,你可以调整数据库的设置、音频处理的参数以及识别算法的配置。根据实际需求调整这些参数可以帮助你更好地使用abracadabra项目。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422