abracadabra 项目启动与配置教程
2025-05-26 11:55:05作者:薛曦旖Francesca
1. 项目目录结构及介绍
abracadabra 项目是一个用 Python 编写的音识别库,其目录结构如下:
abracadabra/
├── docs/ # 项目文档
├── samples/ # 示例文件
├── tests/ # 测试文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git 忽略文件
├── Hyperparameter search.ipynb # 超参数搜索 Jupyter Notebook 文件
├── LICENSE.md # 许可证文件
├── README.rst # 项目说明文件
├── requirements.txt # 项目依赖文件
├── results.csv # 结果文件
├── settings.py # 配置文件
└── setup.py # 设置文件
docs/: 存放项目文档,包括项目的详细说明和API文档。samples/: 包含示例文件,用于展示如何使用项目。tests/: 包含测试文件,用于验证项目的功能。.gitattributes: 定义如何处理项目的特定文件。.gitignore: 定义Git应该忽略的文件和目录。Hyperparameter search.ipynb: Jupyter Notebook 文件,用于超参数搜索。LICENSE.md: 包含项目的许可证信息。README.rst: 包含项目的简要介绍和基本信息。requirements.txt: 列出了项目依赖的Python包。results.csv: 存储实验结果的CSV文件。settings.py: 包含项目的配置信息。setup.py: 包含项目的设置信息,用于安装项目。
2. 项目的启动文件介绍
项目的启动主要通过命令行脚本 song_recogniser 进行。以下是启动脚本的基本使用方法:
song_recogniser initialise # 初始化数据库
song_recogniser register /path/to/your/music/file # 注册音乐文件
song_recogniser recognise --listen # 识别正在播放的音乐
initialise: 初始化数据库,为项目运行做准备。register: 注册音乐文件到数据库,以便识别。recognise: 识别功能,--listen参数表示实时监听并识别。
3. 项目的配置文件介绍
项目的配置主要通过 settings.py 文件进行。以下是配置文件的简要说明:
# settings.py
# 数据库配置
DATABASE = {
'NAME': 'abracadabra.db',
'ENGINE': 'sqlite3',
}
# 音频处理配置
AUDIO = {
'SAMPLE_RATE': 44100,
'CHANNELS': 1,
'FORMAT': 'PCM_16',
'BUFFER_SIZE': 4096,
}
# 识别算法配置
RECOGNITION = {
'HASH_SIZE': 20,
'FINGERPRINTS_PER_SECOND': 20,
'MATCH_THRESHOLD': 0.5,
}
在这个配置文件中,你可以调整数据库的设置、音频处理的参数以及识别算法的配置。根据实际需求调整这些参数可以帮助你更好地使用abracadabra项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19