首页
/ 探索智能的新境界:Arcee领域适应语言模型工具包

探索智能的新境界:Arcee领域适应语言模型工具包

2024-05-30 13:30:56作者:韦蓉瑛

在人工智能和自然语言处理的快速发展中,通用大型语言模型(LLMs)与向量存储之间的鸿沟日益显著。为了弥合这一差距并推动AI系统在特定领域的高效落地,我们欣喜地推出了Arcee Domain Adapted Language Modeling Toolkit(DALM),这是一个面向开发者开放源代码的平台,旨在利用Arcee的预训练领域语言模型(DPT LLMs),让您能够为自己的独特知识产权和世界观定制AI解决方案。

简介:智能定制的未来

DALM工具包提供了强大的基础设施,用于构建基于Arcee团队创建的示例DALMs,如DALM-Patent、DALM-PubMed、DALM-SEC等,以及您自己的个性化DALM。这些模型不仅具备广泛的语言理解能力,更能在专利、医学文献、金融报告等领域展现独特的专长。

技术深度解析

DALM工具包的核心是一个完全可微分的Retrieval Augmented Generation(RAG-end2end)架构的改进版本,首次支持像Llama、Falcon或GPT这样的解码器仅语言模型。通过引入“在批次内负样本概念”和RAG的边缘化,我们优化了整个过程,使其更加高效。

  • training目录下,您可以找到用于训练RAG-end2end和检索器的代码。
  • 对于检索器和生成器的评估,它们被放置在eval文件夹中。
  • 还包括数据处理代码和合成数据生成代码在datasets目录下。

应用场景

无论是在研究、法律、医疗还是任何依赖特定领域知识的应用中,DALM都可帮助创建出精确且针对性强的问答系统。例如,在专利检索中,DALM-Patent能快速定位关键信息;在医学研究中,DALM-PubMed则有助于医生快速获取最新学术成果。

项目亮点

  • 定制化:利用您的专业知识和数据,创建符合业务需求的专属模型。
  • 高效率:得益于RAG-end2end架构和批量负样本概念,训练更快,性能更强。
  • 兼容性:支持广泛的Hugging Face嵌入模型和自回归模型。
  • 易用性:提供直观的命令行接口和详细的文档,简化开发流程。

开始你的旅程

安装只需一行命令:

pip install indomain

或者克隆仓库进行本地开发,并运行dalm version检查安装正确性。

准备好CSV数据集后,使用dalm qa-gen进行预处理,然后用train-retriever-onlytrain-rag-e2e脚本开始训练之旅。评估阶段,eval-retrievereval-rag将助你验证模型效果。

欲知更多详情,查阅项目文档和CONTRIBUTING指南,一起加入Arcee DALM的创新之旅,开启智能应用的新篇章!

GitHub地址 | 开始使用

登录后查看全文
热门项目推荐

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.19 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
188
265
kernelkernel
deepin linux kernel
C
22
6
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45