探索联邦学习安全新境界:基于健壮聚合算法的评估框架
项目简介
在当今数据隐私保护日益重要的背景下,联邦学习以其特有的分布式计算和本地训练特性,成为了人工智能领域的热点。然而,其安全性和鲁棒性同样面临严峻挑战。本项目【A General Framework to Evaluate Robustness of Aggregation Algorithms in Federated Learning】提供了一个强大的工具集,专门用于评估并分析联邦学习中聚合算法的安全表现,特别是在抵抗恶意客户端更新攻击方面的效能。通过此项目,开发者可以复现来自两篇学术论文的核心实验和结论,即《操纵拜占庭:联邦学习中的模型中毒攻击与防御优化》和《重回起点:生产环境中联邦学习的毒化攻击批判性评价》,深入理解联邦学习的安全边界。
技术剖析
该项目深入研究了五种最先进的带理论收敛保障的聚合算法:Krum、Multi-Krum、Bulyan、Trimmed-Mean以及Median。这些算法旨在增强联邦学习对恶意参与者(Byzantine clients)的抵抗力,确保模型的稳健性。此外,项目还包括针对模型的基本毒化攻击方法Fang和LIE,以及针对特定聚合算法定制的高级攻击策略——Aggregation-tailored attacks与Aggregation-agnostic attacks,体现了针对不同聚合逻辑的广泛适应性和深度。通过Jupyter Notebooks的形式,每一步的代码解释详尽,即便是初学者也能快速上手,深入探索联邦学习中的安全性问题。
应用场景
在金融、医疗健康、智能物联网等对数据隐私极度敏感的领域,联邦学习的应用正逐渐普及。本项目特别适用于:
- 系统安全研究人员:测试和评估自定义聚合算法的脆弱性。
- AI开发者:在设计或选择联邦学习架构时,了解如何有效防范恶意攻击。
- 企业级应用维护者:评估现有联邦学习部署的健壮性,提升模型准确性及整体系统的可靠性。
项目特点
- 全面性:覆盖从基础到先进的攻击与防御机制,为联邦学习安全研究提供了全面的视角。
- 易用性:通过交互式的Notebooks,简化了复杂技术的研究门槛。
- 灵活性:支持定制化的攻击模式,适应不断演进的安全威胁。
- 实证研究:可直接复现实验结果,验证理论假设,加速学术与工业界的创新循环。
借助这个框架,我们不仅能够深入了解当前联邦学习系统的安全状况,还能促进开发更加坚固、可靠的下一代联邦学习技术。对于那些致力于提高数据共享时代智能系统的信任度的研究人员和开发者来说,这一项目无疑是一把解锁未来安全难题的钥匙。立即加入探索之旅,共同构建更为安全的数字世界吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00