Kubespray集群升级中kubeadm健康检查失败问题分析
问题背景
在使用Kubespray进行Kubernetes集群升级时,特别是从1.30.8版本升级到1.31.4版本的过程中,部分用户遇到了控制平面节点升级失败的问题。该问题表现为kubeadm的升级健康检查(upgrade-health-check)作业在kube-system命名空间中未能按时完成,导致整个升级过程中断。
问题现象
在升级过程中,当第一个控制平面节点成功升级后,第二个控制平面节点的升级会失败,并出现以下关键错误信息:
[upgrade/health] FATAL: [preflight] Some fatal errors occurred:
[ERROR CreateJob]: Job "upgrade-health-check-rcfkg" in the namespace "kube-system" did not complete in 15s: no condition of type Complete
值得注意的是,这个问题呈现出以下特征:
- 仅当kube-controller-manager运行升级后的新版本(v1.31.4)时才会出现
- 当kube-controller-manager仍运行旧版本(v1.30.8)时,健康检查作业能够正常完成
根本原因分析
经过深入分析,发现问题的根源在于升级流程设计上的一个误区。根据Kubernetes官方文档,kubeadm upgrade apply命令实际上只应该用于第一个控制平面节点的升级,而对于后续的控制平面节点,应该使用kubeadm upgrade node命令。
当前Kubespray的实现中,对所有控制平面节点都使用了kubeadm upgrade apply命令,这会触发不必要的健康检查。这些健康检查在新版本控制器管理器运行时可能会因为各种原因(如资源不足、网络延迟等)无法在默认的15秒超时时间内完成,从而导致整个升级过程失败。
解决方案
针对这个问题,建议采取以下解决方案:
-
修改升级流程:按照Kubernetes官方推荐的方式,区分第一个控制平面节点和后续节点的升级命令:
- 第一个节点使用
kubeadm upgrade apply - 其他节点使用
kubeadm upgrade node
- 第一个节点使用
-
临时解决方案:如果急需完成升级,可以在kubeadm命令中添加
--ignore-preflight-errors参数,跳过健康检查步骤。但这种方法只是权宜之计,不是长期解决方案。
实施建议
对于使用Kubespray进行集群升级的用户,建议:
- 在升级前仔细检查当前集群状态,确保所有组件正常运行
- 考虑先在小规模测试环境中验证升级流程
- 对于生产环境,建议联系Kubespray社区获取最新的修复补丁
- 监控升级过程中的资源使用情况,特别是API服务器和控制器管理器的负载
总结
Kubernetes集群升级是一个复杂的过程,需要严格按照官方推荐的最佳实践进行操作。Kubespray作为自动化部署工具,正在不断完善其升级流程。用户遇到此类问题时,应深入理解底层机制,而不是简单地尝试绕过错误检查。随着Kubespray社区的持续改进,这类问题有望在未来的版本中得到彻底解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00