XTuner项目中替换LLaVA的Qwen语言模型的技术要点
背景介绍
XTuner是一个基于Transformer架构的开源项目,其中LLaVA模块作为重要组件,默认使用Qwen语言模型作为其核心LLM模块。在实际应用中,开发者可能需要替换Qwen模型为其他语言模型,但这一过程会遇到一些技术挑战。
关键问题分析
Qwen模型与其他主流语言模型存在显著差异,主要体现在其tokenizer设计上。最突出的问题是Qwen的tokenizer没有定义bos_token_id(起始标记ID),而transformers库在使用inputs_embeds作为输入时(LLaVA需要此功能)必须要有bos_token_id。
临时解决方案
对于需要快速替换模型的开发者,可以采用以下配置方式:
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path,
trust_remote_code=True,
padding_side='right',
bos_token='<|im_start|>',
eos_token='<|im_end|>')
此配置通过显式指定bos_token和eos_token来绕过原始Qwen模型的限制。需要注意的是,这只是一个临时解决方案,更完善的解决需要Qwen上游模型本身支持bos_token。
配套修改建议
当使用Qwen-7B-Chat等聊天模型时,还需要修改EvaluateChatHook的stop_word设置,确保对话生成的终止条件正确。这是因为不同模型的对话终止标记可能不同,需要根据具体模型进行调整。
技术原理深入
transformers库在使用generate()方法时,如果传入的是inputs_embeds而非input_ids,必须确保bos_token_id有效。Qwen模型由于设计原因,bos_token_id默认为None,这会导致generate()方法报错。这本质上反映了Qwen模型当前不支持仅使用inputs_embeds作为输入的generate操作。
模型转换注意事项
对于已经使用Qwen训练得到的模型文件(.iter_xtuner格式),如需转换为官方LLaVA格式,开发者需要注意模型架构差异和参数映射关系。这一过程需要对两种模型的结构有深入理解,确保各层参数正确对应。
最佳实践建议
- 在替换模型前,充分了解目标模型与Qwen的架构差异
- 对于关键组件如tokenizer,进行充分测试验证
- 考虑模型替换对上下游组件的影响
- 对于生产环境,建议等待Qwen上游模型的完善支持
通过以上技术要点的理解和实践,开发者可以更顺利地在XTuner项目中完成LLaVA模块的语言模型替换工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00