推荐深度学习推荐系统框架——DeepRec
在信息爆炸的时代,个性化推荐已经成为帮助用户从海量数据中发现有价值信息的关键技术。为此,我们向您推荐一个基于Python和Tensorflow实现的深度学习推荐模型库——DeepRec。这个开源项目的目标是减少研究人员和开发者重复工作,以实现最先进的推荐算法。
项目介绍
DeepRec是一个涵盖了评分预测、Top-N推荐和序列推荐等多种推荐场景的框架。它不仅提供了如I-AutoRec、U-AutoRec、NeuMF等经典的推荐算法实现,还持续更新新的模型,例如AttRec。其特点是良好的模块化设计和可扩展性,使得添加新模型变得简单易行。
项目技术分析
DeepRec基于Tensorflow构建,支持Python 3.5+,并依赖numpy、scipy、sklearn和pandas等库。通过Test文件夹下的脚本,您可以轻松运行不同类型的推荐任务,如test_item_ranking.py(Top-N推荐)、test_rating_pred.py(评分预测)和testSeqRec.py(序列推荐)。此外,该项目未来计划支持更多深度学习模型、改进评估协议、代码重构以及升级到Tensorflow 2.0。
应用场景
无论是在电商网站的商品推荐、视频平台的内容推送,还是音乐应用的歌曲建议,甚至新闻聚合的应用场景下,DeepRec都能发挥重要作用。它的广泛适用性使其成为研究和开发个性化推荐系统的理想工具。
项目特点
- 全面性:覆盖多种推荐任务和多款主流推荐算法。
- 模块化:易于理解的代码结构,方便插入和调整模型。
- 开放源码:遵循GNU General Public License,鼓励社区贡献。
- 易于使用:提供测试脚本,可以快速上手实现推荐系统。
为了便于更多中国开发者使用,DeepRec还提供了中文版本的文档。
在您的推荐系统项目中使用DeepRec,不仅可以节省时间和精力,还能享受到深度学习带来的精准推荐体验。让我们一起探索个性化的无限可能,为用户提供更优质的推荐服务。为了感谢您的支持,请在引用时参考项目中的Citation信息。现在就加入DeepRec的行列,开启深度学习推荐的新旅程吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00