HybridBackend 项目下载及安装教程
2024-12-05 20:53:08作者:蔡怀权
1. 项目介绍
HybridBackend 是一个高性能的框架,用于在异构集群上训练宽度和深度推荐系统。它具有高效的内存数据加载、GPU优化、以及在大规模训练和评估中的通信效率等特点,易于与现有的AI工作流程集成。
2. 项目下载位置
您可以在 GitHub 上找到并下载 HybridBackend 项目,项目地址为:HybridBackend。
3. 项目安装环境配置
在开始安装前,请确保您的系统中已安装以下依赖:
- Python
- CUDA
- GLIBC
以下是环境配置的步骤和示例:
### 步骤 1:安装 Python
确保您的系统中已安装 Python。您可以通过命令行检查:
```bash
python --version
步骤 2:安装 CUDA
根据您的 GPU 版本,从 NVIDIA 官方网站下载并安装适合的 CUDA 版本。
步骤 3:安装 GLIBC
确保您的系统中已安装 GLIBC,通常 Linux 系统默认已安装。

注意:请替换 /path/to/image/example_env_config.png 为实际的图片路径。
4. 项目安装方式
项目提供了两种安装方式:
方法 1:从 PyPI 安装
使用 pip 命令安装:
pip install hybridbackend-tf115-cu121
或根据您的 TensorFlow 和 CUDA 版本选择合适的安装包。
方法 2:从源码构建
从 GitHub 克隆项目:
git clone https://github.com/DeepRec-AI/HybridBackend.git
然后按照项目中的 Building Instructions 文档进行构建。
5. 项目处理脚本
以下是项目中的一个处理脚本示例:
import tensorflow as tf
import hybridbackend.tensorflow as hb
# 加载数据集
ds = hb.data.Dataset.from_parquet(filenames)
ds = ds.batch(batch_size)
# 使用 GPU 进行嵌入查找
with tf.device('/gpu:0'):
embs = tf.nn.embedding_lookup_sparse(weights, input_ids)
# 请参考项目文档以获取更多信息
请根据实际需求调整脚本内容。
以上就是 HybridBackend 项目的下载及安装教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246