【免费下载】 DeepSurv 教程:基于深度学习的生存分析框架
2026-01-16 09:45:57作者:尤辰城Agatha
1. 项目介绍
DeepSurv 是一个用 Python 编写的深度学习库,它实现了 Cox 比例风险模型的深度学习版本。该项目利用 Theano 和 Lasagne 库,旨在克服传统 Cox 回归模型的局限性,不需要预先选择协变量,而是自适应地学习它们。这使得 DeepSurv 成为各种生存分析应用的理想工具,特别是在医疗领域用于个性化治疗推荐。
2. 项目快速启动
首先,确保安装了以下依赖项:
- Theano
- Lasagne
- Lifelines(用于生存分析)
- randomForestSRC(随机森林回归)
安装
通过 pip 可以安装所需依赖:
pip install theano lasagne lifelines randomforestsrc
训练网络
以下是训练 DeepSurv 网络的基本步骤:
import deepsurv as ds
# 定义超参数
hyperparams = {'input_shape': (num_features,), 'hidden_layers': [50, 50], 'activation': 'tanh'}
# 初始化网络
network = ds.DeepSurv(**hyperparams)
# 训练数据(train_data, valid_data 分别是训练集和验证集)
log = network.train(train_data, valid_data, n_epochs=500)
# 评估测试数据
cindex = network.get_concordance_index(test_data)
print('C-index:', cindex)
可视化训练曲线
如果你安装了 matplotlib,可以绘制训练和验证曲线:
ds.plot_log(log)
3. 应用案例和最佳实践
DeepSurv 可用于预测患者生存率并推荐个性化的治疗方案。在医疗影像分析中,可以结合卷积神经网络来预测风险。最佳实践包括:
- 验证数据集划分应保持独立,避免过拟合。
- 调整超参数以优化性能,例如层数、隐藏节点数量和激活函数。
- 对于大型数据集,考虑使用分布式训练策略提高效率。
4. 典型生态项目
- Lifelines:用于生存分析的 Python 库,提供了 Cox 回归和其他方法。
- Keras 或 PyTorch:虽然 DeepSurv 使用 Theano 和 Lasagne,但现代深度学习项目可能更倾向于使用 Keras 或 PyTorch 进行建模。
- scikit-survival:提供集成的生存分析算法,可以与 scikit-learn API 配合使用。
以上就是关于 DeepSurv 的简介及其使用指南。通过这些内容,你应该能够开始探索这个深度学习生存分析工具了。在实际项目中,记得要根据具体的数据集和需求进行适当的调整和优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355